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ABSTRACT 

 During the past half-century, the experimental use of looking measures have led 

to many new discoveries about the origins of cognition. Across the first year, infants’ 

looking changes in predictable ways, they form memories more quickly, and they begin 

to discriminate between subtly different stimuli. However, a rich understanding of the 

link between looking and cognitive dynamics has yet to be achieved. This was the 

overarching goal of this thesis. 

 I developed a new Dynamic Field Theory of infant looking and memory and 

formally implemented this theory in a Dynamic Neural Field model. In Experiment 1, I 

tested and confirmed a prediction of the model with 10-month-old infants. The prediction 

was that robust memory can induce both a familiarity and novelty bias depending on the 

metric similarity of the familiar and novel items at which infants look. This prediction is 

a radical one because all existing theories posit that familiarity biases arise from weak 

memory.  

 One central innovation of the DNF model is that it captures developmental change 

in the rate at which memories are formed and discrimination within the same system and 

from the same developmental mechanism. With a validated theory in hand, in Experiment 

2 I tested this theoretical assumption. In particular, I measured the looking dynamics and 

discrimination performance of 5-, 7-, and 10-month-old infants. The results showed that 

infants’ exhibited an increased ability to discriminate between dissimilar familiar and 

novel items between 5 and 7 months of age. The results also showed that three well-

known looking indices of memory formation also generally change between 5 and 7 

months of age. Additionally, individual differences in these looking indices were 
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predictive of infants’ discrimination performance. These findings indicate that, indeed, 

looking and discrimination change together, and are linked within individuals, over 

development.  

 In Experiment 3 I tested developmental change in the discrimination abilities of 

at-risk infants. Previous studies have shown that the looking dynamics and recognition 

performance of at-risk infants is delayed but, critically, follows the same developmental 

trajectory as typically developing infants. Consistent with these previous studies, the 

looking dynamics of at-risk infants did change in predictable ways over development. 

However, their discrimination performance did not – young at-risk infants, unlike young 

typically developing infants or older at-risk infants, discriminated between dissimilar 

familiar and novel items.     
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ABSTRACT 

 During the past half-century, the experimental use of looking measures have led to 

many new discoveries about the origins of cognition. Across the first year, infants’ 

looking changes in predictable ways, they form memories more quickly, and they begin to 

discriminate between subtly different stimuli. However, a rich understanding of the link 

between looking and cognitive dynamics has yet to be achieved. This was the overarching 

goal of this thesis. 

 I developed a new Dynamic Field Theory of infant looking and memory and 

formally implemented this theory in a Dynamic Neural Field model. In Experiment 1, I 

tested and confirmed a prediction of the model with 10-month-old infants. The prediction 

was that robust memory can induce both a familiarity and novelty bias depending on the 

metric similarity of the familiar and novel items at which infants look. This prediction is a 

radical one because all existing theories posit that familiarity biases arise from weak 

memory.  

 One central innovation of the DNF model is that it captures developmental change 

in the rate at which memories are formed and discrimination within the same system and 

from the same developmental mechanism. With a validated theory in hand, in Experiment 

2 I tested this theoretical assumption. In particular, I measured the looking dynamics and 

discrimination performance of 5-, 7-, and 10-month-old infants. The results showed that 

infants’ exhibited an increased ability to discriminate between dissimilar familiar and 

novel items between 5 and 7 months of age. The results also showed that three well-

known looking indices of memory formation also generally change between 5 and 7 

months of age. Additionally, individual differences in these looking indices were 
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predictive of infants’ discrimination performance. These findings indicate that, indeed, 

looking and discrimination change together, and are linked within individuals, over 

development.  

 In Experiment 3 I tested developmental change in the discrimination abilities of at-

risk infants. Previous studies have shown that the looking dynamics and recognition 

performance of at-risk infants is delayed but, critically, follows the same developmental 

trajectory as typically developing infants. Consistent with these previous studies, the 

looking dynamics of at-risk infants did change in predictable ways over development. 

However, their discrimination performance did not – young at-risk infants, unlike young 

typically developing infants or older at-risk infants, discriminated between dissimilar 

familiar and novel items.     
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CHAPTER 1 

MEASURING INFANT LOOKING BEHAVIOR  

 Our understanding of the origins of human cognition is largely attributable to 

measures of infant looking. The experimental investigation of infant cognition flourished 

once it was discovered that infants’ looking to visual stimuli in the laboratory was a 

reliable behavioral measure of memory formation and discrimination. In the 1960s, 

researchers developed innovative habituation procedures to study basic perceptual and 

cognitive development in infants. These procedures were based on two central 

observations. One observation is that infants’ looking time decreases as they are 

repeatedly shown a single stimulus across a series of presentations (Cohen, Gelber, & 

Lazar, 1971). The other observation is that looking time recovers following this 

habituation phase if infants are shown a perceptually distinct novel stimulus.  

Looking measures have led to a rich empirical database on the cognitive abilities 

of infants and developmental changes in basic attentional, memory, and recognition 

processes. For instance, habituation studies have been used to study infants’ developing 

ability to discriminate among colors, shapes, faces, movement trajectories, and sounds 

(e.g., Cohen, Gelber, & Lazar, 1971; Perone & Oakes, 2006; Rakison, 2004; Rose, 1981). 

Habituation tasks have also been adapted in creative ways to study developmental change 

in general cognitive processes such as working memory (e.g., Ross-Sheehy, Oakes, & 

Luck, 2003), statistical learning (e.g., Kirkham, Slemmer, & Johnson, 2002; Saffran, 

Aslin, & Newport, 1996), category formation (e.g., Oakes, Coppage, & Dingel, 1997; 

Quinn, Eimas, & Rosenkrantz, 1993; Younger & Fearing, 2000), and the ability to 
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associate labels with objects (e.g., Rost & McMurray, 2009; Werker, Cohen, Lloyd, 

Cassasola, & Stager, 1998).  

Although looking measures have been widely used to study infant cognition for 

nearly half a century, interpreting looking can still be difficult. This difficulty has led to 

several key debates in the literature. For instance, Baillargeon (1987) has argued that 

young infants’ limited behavioral repertoire precludes researchers from measuring high-

level concepts that may be present very early in development. Baillargeon (1987) 

presented evidence that looking measures can tap infants’ understanding of object 

permanence at 4 months of age, an ability previously believed to emerge at 10 to 12 

months of age when studied in search tasks that require infants to reach for hidden 

objects. Other researchers have argued that looking indexes perceptually-based memory 

representations and have shown that looking changes dramatically as the stimulus and 

task context are manipulated (Bogartz, Shinskey, & Speaker, 1997; Cahson & Cohen, 

2000; Haith, 1998). A richer understanding of how looking is linked to cognitive 

processing might resolve such debates.  

 Looking is clearly a powerful empirical tool. However, looking is also a critical 

exploratory behavior that mediates the interplay between the physical and social context 

and the developing brain. For instance, preterm infants explore more toys and more 

frequently shift their gaze among different toys when exploring objects in an environment 

shared with their caregiver than when they explore objects alone (Landry & Chapieski, 

1987). Interestingly, individual differences in caregiver behaviors also affect how preterm 

infants behave. Caregivers who maintain their infant’s attention on toys have infants who 

look longer at toys, explore more toys, and interact with the caregiver more. Critically, 
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such directive behaviors of the caregiver can have a positive effect on cognitive 

development. Recent intervention studies that train caregivers to maintain their infant’s 

attentional focus on objects have facilitated positive developmental outcomes in areas of 

language development and the coordination of joint attention (Landry, Smith, Swank, & 

Guttentag, 2008). Such interventions also affect the caregivers: mothers more frequently 

initiate joint attention and maintain their infants’ focus after intervention than before (see 

also Landry, Smith, & Swank, 2006). These studies show that looking is not only a good 

measure of cognition but also contributes to change in cognition. Moreover, these studies 

point to a necessity of understanding the link between looking and cognitive dynamics 

across the second-to-second and developmental time scales on which infants explore and 

interact with objects and others. Such understanding might foster the assessment of 

cognition in the laboratory and interventions in the lives of at-risk infants.  

The overarching goal of this thesis is to gain a richer understanding of how 

looking as an exploratory behavior is linked to cognitive dynamics as studied in the 

laboratory. I accomplish this goal by developing a new theoretical model of looking and 

memory formation and grounding its behavior in a rich empirical data set examining 

developmental change in looking, memory formation, and discrimination. Below, I 

present an overview of three literatures that capture how these behaviors and processes 

change over development. I begin with what is known about how looking dynamics and 

the rate of memory formation changes over development. Next, I discuss new insights 

into the link between looking and memory that have emerged from studying at-risk infant 

populations. Finally, I review what is known about how infants’ discrimination abilities 

change over development. These three literatures set the stage for the specific goals I 
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pursue in the thesis. Note that the literatures reviewed below will be brief. In subsequent 

chapters, detailed reviews will be presented where relevant.  

Looking Dynamics and Memory  

Looking and memory formation undergoes significant developmental change 

across the first year (for reviews see Colombo & Mitchell, 1990; Rose et al., 2004). Over 

the past several decades, three looking measures have emerged as reliable indices of 

developmental change in the rate at which infants form memories – shift rate (rate of 

switching gaze between pairs of stimuli relative to total looking time), look duration 

(average look length), and peak look (longest look). With age, shift rate increases, look 

duration decreases, and peak look decreases. It is widely accepted that these 

developmental changes reflect increases in the rate at which infant process and form 

memories for visual information. Rose, Feldman, and Jankowski (2002) have provided 

the clearest support for this hypothesis. They developed a preferential looking task where 

looking measures could be used as an index of processing speed. Infants were presented 

with pairs of stimuli. On each trial, one stimulus remained unchanged (familiar) and one 

stimulus changed (novel). Processing speed was indexed as the number of trials required 

to exhibit a novelty preference on three consecutive trials. The number of trials to 

criterion decreased with age and was correlated with shift rate, look duration, and peak 

look.  

There is some evidence that these looking measures are stable within individuals 

across development. Rose, Feldman, and Jankowski (2001) examined individual and 

developmental differences in a standard visual recognition task in which infants were 

familiarized with pairs of identical items and their memory for the familiar item was 
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tested by pairing it with a novel one. As in the processing speed task, shift rate increased 

and look durations and peak looks decreased with age. Infants’ novelty preferences also 

increased with age. Moreover, these looking measures were relatively stable across the 

first year – cross-age correlations showed that infants who exhibited a high shift rate at 5 

months of age, for instance, also tended to exhibit a higher shift rate at 7 and 12 months 

of age. These looking measures were also associated with stronger novelty preferences 

within an age, which, presumably, measures the strength of infants’ memory for the 

familiar stimulus. This study suggests, then, that individual differences in looking reflect 

differences in developmental state among infants.  

Looking Dynamics and Memory In At-Risk Infant Populations 

Researchers have gained new insights into the sources of individual differences in 

looking and cognitive dynamics by studying at-risk infant populations. The most 

commonly studied at-risk infant population is preterm infants. Prematurity puts children 

at risk for developmental delays in basic cognitive processes, special needs in the 

classroom, disabling conditions such as mental retardation, and diagnoses of childhood 

mental disorders such as Attention Deficit Disorder with Hyperactivity and Autism 

(Alyward, 2005; Biederman, Prince, Fischer, & Faraone, 2002; Larsson et al., 2005; 

Wilkerson, Volpe, Dean, & Titus, 2002). Many studies suggest that delays in basic 

cognitive processes are evident during infancy and may impact the development of 

higher-level cognitive function. These delays have been interpreted as delays in 

processing speed. The rational is that the adverse neonatal history of many premature 

infants impacts the neural processes underlying basic cognitive processes.  
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Overall, preterm infants’ looking dynamics resemble those of younger term 

infants. Preterm infants exhibit slower shift rates, longer look durations, and weaker 

novelty scores than similarly aged term infants (Rose et al., 2001). These population 

differences in looking and recognition performance suggest that preterm infants are 

slower processors and form weaker memories than term infants. However, the looking 

measures on which term and preterm infants differ are not consistent across age and 

stimulus type. For example, Rose et al. (2001) found that at 5 and 7 months preterm 

infants exhibited a slower shift rate when looking at geometrical patterns but not faces. 

At 12 months of age, the opposite pattern was observed. Moreover, term and preterm 

infants do not always exhibit different patterns of looking and recognition performance. 

For example, Rose et al. (2002) found that term and preterm infants did not exhibit 

different patterns of looking in the processing speed task, although preterm infants were 

slower to meet the criterion than term infants. Similarly, Rose, Feldman, and Jankowski 

(2001b) found no differences in looking measures or recognition performance in a serial 

recognition task. The proposal in this thesis is that a richer understanding of how looking 

and cognitive dynamics are linked will shed light on this complex pattern of population 

differences across tasks and stimulus types.  

Developmental Change In Discrimination 

Over the course of the first year, infants’ are able to make increasingly subtle 

discriminations along single, continuous metrically-organized dimensions. For example, 

Brannon, Sumarga, and Libertus (2007) examined changes in the precision with which 

infants discriminate a visual temporal duration over development. Six-month-old infants 

were able to discriminate a 1:2 temporal duration ratio, but not a 2:3 ratio. By contrast, 
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10-month-old infants dishabituated to a 2:3 temporal duration ratio, but not a 3:4 ratio. 

These findings suggest that infants’ memory representations become more precise over 

development. Interestingly, the precision with which infants represent information also 

spans sensory modalities. Lipton and Spelke (2003) found that 6-month-old infants were 

able to discriminate 16 from 8 sounds, but not 12 from 8 sounds. Nine-month-old infants 

were able to discriminate 12 from 8 sounds but not 10 from 8 sounds. Together, these 

studies suggest that infants’ memory representations become more precise during the first 

year.  

These changes in discrimination are occurring during the same developmental 

period as changes in looking dynamics and recognition performance. It is unclear, 

however, whether changes in processing speed and discrimination are linked. Brannon et 

al (2007) found that older infants habituated more quickly than young infants and 

discriminated between highly similar familiar and novel stimuli. However, in a 

replication, they found no difference in habituation but a difference in discrimination still 

remained. It is notable that Rose et al. (2001) found that shift rate, peak look, and look 

duration were all related to recognition performance, which suggests that discrimination 

and processing speed are linked within individuals. However, Rose et al. used high-

dimensional items that varied on multiple dimensions rather than items that have well-

controlled metric properties required to study changes in discrimination abilities. A 

critical developmental question, therefore, is whether these two changes over 

development arise from the same or different mechanisms. 
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Goals of the Thesis 

 Looking is a powerful empirical tool for studying cognition during infancy. There 

is good evidence that looking dynamics index individual and developmental differences 

in processing speed. Additional evidence comes from studies of preterm infants, who 

exhibit looking and recognition performance that resembles younger term infants. 

Precisely how term and preterm infants differ, however, is at present unclear. There is no 

critical measure on which preterm and term infants consistently differ, and they do not 

always differ when their performance is compared across different stimulus types or 

tasks. During the same developmental period that looking is changing, infants are also 

exhibiting an increased ability to discriminate between similar items. It is unknown 

whether looking and discrimination change together over development and whether these 

changes arise from the same mechanism. Finally, there have been no studies examining 

how fine-grained discrimination changes over development in preterm infants.  

 The overarching goal of this thesis is to attain a richer understanding of the 

mechanisms that underlie changes in speed of processing and discrimination abilities 

during the first year. I will pursue this in three steps. First, my evaluation of current 

theories of infant habituation and visual recognition in Chapter 2 reveals that these 

theories offer a limited view of the link between looking and cognitive dynamics; thus, I 

propose a new dynamic field theory (DFT) in Chapter 3 that links the act of looking to 

the neural processes that underlie habituation and recognition. I then generalize this 

theory in Chapter 4 to a key task used to probe both speed of processing and visual 

discrimination—the visual paired comparison task—and I demonstrate the utility of the 

theory by generating and empirically testing a novel prediction. 
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The second step in this thesis pursued in Chapter 5 examines whether 

developmental changes in looking indices of processing speed and discrimination change 

together over development. Moreover, quantitative simulations of infants’ behavior with 

the DFT probe whether both developmental changes can arise from a single mechanistic 

source—stronger neural interactions. The final step in this thesis probes whether the 

developmental course of discrimination in at-risk infants parallels that of typically 

developing infants, as looking measures do. This will foster a greater understanding of 

how typically and atypically developing infants differ, and whether speed of processing 

and discrimination abilities change together in both term and preterm populations. 

In this thesis, I will argue that theory and experiment together can provide a 

deeper understanding of the link between looking and cognitive dynamics over 

development. In Chapter 2, I evaluate whether existing theories are up to this task.  
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CHAPTER 2 

THEORIES OF INFANT LOOKING AND MEMORY 

The empirical database from looking studies has grown immensely over the past 

several decades. During the same period, there have also been significant advances in 

theory. In this chapter, I review these theories. I begin with a review of conceptual 

theories of infant habituation. These theories have described how memory formation 

impacts looking, they have been empirically generative, and they have been generalized 

to at-risk populations. However, these theories are agnostic with respect to discrimination 

abilities. These theories, therefore, do not specify whether developmental change in 

processing speed and discrimination arise from the same or a different mechanism. Next, 

I review neural network theories. These theories describe how memory formation impacts 

looking well. They also describe the nature of memory representations, which enables 

them to capture developmental change in discrimination. Neural network accounts are 

also geared toward elucidating the neural dynamics that underlie looking, which may be 

useful in trying to understand how typically and atypically developing infants differ. 

Nevertheless, no single network architecture has been used to capture developmental 

change in discrimination and processing speed. Existing neural network theories, then, do 

not elucidate whether processing speed and discrimination arise from the same or a 

different mechanism. Finally, conceptual and neural network theories share a crucial 

limitation – they both treat looking as a behavioral output of cognitive dynamics instead 

of as the active behavior that it is. Indeed, experimental manipulations of how infants 

distribute their looks at a stimulus influences whether or not they recognize the stimulus 
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(Jankowski, Rose, & Feldman, 2001). This suggests that we need a better understanding 

of how the act of looking is linked to learning and memory formation in infant cognition. 

Conceptual Theories of Infant Looking and Memory 

Contemporary thinking about the processes underlying infant looking is still 

strongly influenced by Sokolov’s (1963) comparator model. Sokolov proposed that when 

an organism orients to a stimulus, it begins to construct an internal representation that is 

compared to the stimulus. As the internal representation and the stimulus begin to match, 

the organism orients away from the stimulus and seeks novelty. Although Sokolov’s 

comparator model is still influential, early work with infants showed that the model was 

incomplete. In one revealing study, Cohen (1972) found that orienting to a stimulus and 

sustaining fixation to the stimulus index separate, interacting processes. In particular, 

Cohen habituated infants to a small, medium, or large checkerboard that also varied in the 

number of checks. He found that infants exhibited longer looking to checkerboards with 

more, smaller checks than boards with fewer, larger checks. Interestingly, infants 

oriented more rapidly to larger stimuli than smaller stimuli, regardless of the number of 

checks.  

Based on these findings, Cohen (1973) developed a dual-process model of infant 

habituation with two interactive processes: an attention getting process that controls 

orienting to a stimulus and an attention holding process that controls sustained looking at 

a stimulus. The thrust of the model was that stimulus properties such as brightness and 

size attract infants’ gaze, but, once fixated, perceptual encoding and memory formation 

sustain fixation. When the infant has formed a memory for a stimulus, the attention 

getting process leads the infant to fixate the stimulus, but fixation is not maintained. The 
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dual-process model enriched Sokolov’s basic comparator process, delineating multiple 

interactive processes that orient gaze, sustain fixation, and release fixation from a 

stimulus.   

The basic processes described in the dual-process model are the foundation for 

more recent conceptual theories of infant habituation. Most notable is Hunter and Ames’ 

(1988) multi-factor model. The core assumption of the model is that early in learning, 

infants actively encode a stimulus, which biases them to preferentially look at familiar 

over novel stimuli. Familiarity preferences, thus, reflect the active encoding and initial 

memory formation that underlies attention holding in the dual-process model. Late in 

learning, infants’ memory for a stimulus supports recognition and biases them to look at 

novel over familiar stimuli. The transition from familiarity-to-novelty is assumed to be 

gradual, resulting in null preferences in between that reflect an equal influence of 

memory for the familiar stimulus and encoding of the novel one. 

A central innovation of the multi-factor model is that it captures the familiarity-to-

novelty shift. In this theory, the time course of this shift can vary with the developmental 

state of the infant. Indeed, young infants exhibit familiarity preferences after longer 

periods of familiarization than older infants, indicating that young infants form memories 

for visual information more slowly than older infants (Rose, Gottfried, Melloy-Carminar, 

& Bridger, 1982).  

In summary, the dual-process (Cohen, 1973) and multi-factor (Hunter & Ames, 

1988) models remain the overarching framework for investigations of the processes 

underlying looking and have consistently been supported by empirical findings. These 

models do have some important limitations, however. One limitation is that they do not 



www.manaraa.com

 13 

specify how developmental changes in looking and memory processes arise. For instance, 

the multi-factor model does not explain why stimuli are recognized with less exposure 

over development or why looking dynamics differ across individuals and development. 

One explanation is that infants process information more quickly with age, allowing them 

to form memories more quickly which, in turn, leads them to look less. Indeed, this 

processing speed hypothesis is the most popular framework in which looking measures 

are interpreted (see Rose et al., 2004 for a review). For example, the notion of processing 

speed generalizes to individuals – infants who exhibit more mature looking dynamics are 

faster processors than infants who exhibit less mature looking dynamics. And the concept 

generalizes to at-risk infant populations - preterm infants exhibit looking dynamics that 

resemble younger infants because they are slower processors. A major limitation of the 

processing speed hypothesis, however, is that it does not explain how processing speed 

changes. For example, does processing speed change because the time required for a 

stimulus to be encoded gets faster, that the time it takes to consolidate an item in working 

or long-term memory gets faster, or both? And how do such changes arise in the infant 

brain? Neural network theories have offered new insights into possible mechanisms 

underlying developmental change in processing speed. I turn to these theories next.  

Neural Network Models of Infant Looking and Memory 

During the past decade, neural network models have begun to elucidate the neural 

processes that underlie developmental changes in looking, memory formation, and 

recognition performance during infancy. All existing models implement a common 

notion of looking, shown in Figure 1A. In this implementation, looking is a behavioral 

output of processing within the cognitive system. As infants experience a stimulus, they 
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begin to construct an internal representation of it. This leads to high levels of looking. 

Over time, the representation begins to match the stimulus in the world. This leads to low 

levels of looking. Below, I will review the accomplishments and limitations of three 

common classes of neural network models: autoencoders, autoassociaters, and dynamic 

neural fields. 

Autoencoders. A long-standing debate in the infant cognition literature is whether 

infants rely on conceptual or perceptual information to group items into categories in 

habituation tasks. Autoencoders have made a major contribution to this debate. 

Autoencoders consist of a small layer of hidden nodes sandwiched between larger, 

identical input and output layers. Each input and output node is tuned to a different 

feature of, for instance, an animal (e.g., has legs) or a feature value of a dimension (e.g., 

leg length). As the network is trained with an input pattern, the hidden layer gradually 

learns to reproduce the input pattern on the output layer. Looking time is approximated 

by calculating the error between the input and output vector, which is high early in 

training and low late in training. This is said to result in longer looking at the onset of 

training and shorter looking at the end of training. The network recognizes a novel 

stimulus if the input pattern can be reproduced relatively well at test (i.e., low error), and 

the network detects a novel stimulus if the input pattern cannot be reproduced (i.e., high 

error). 

Autoencoders have been particularly fruitful in describing the categorical 

representations infants’ form in looking tasks. A well-studied example is the finding that 

4-month-old infants familiarized with pairs of dogs included cats in their dog category, 

but 4-month-old infants familiarized with cats excluded dogs from their cat category 
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(Quinn et al., 1993). Networks trained with a distribution of feature values derived from 

the stimulus set used by Quinn and colleagues exhibited the same asymmetry (French, 

Mareschal, Mermillod, & Quinn, 2004). A series of simulation studies suggested that the 

scope of infants’ categories depends on the statistical distribution of feature values to 

which they are exposed during familiarization. In particular, simulation studies showed 

that the variability of the dog feature values (e.g., ear width) was considerably broader 

and encompassed the variability of the distribution of cat feature values. Importantly, 

constraining the distribution of dog feature values and expanding the distribution of cat 

feature values reversed the asymmetry in both networks and infants.  

 Although generative, autoencoders have some limitations. Standard autoencoders 

are limited in their ability to capture developmental changes in stimulus representations 

because they are dominated by the statistical distribution of the input. In the asymmetrical 

category learning example described above, a standard autoencoder learns an 

asymmetrical category when the distribution of one category encompasses the other and a 

symmetrical category when the distributions of feature values do not overlap. Infants, by 

contrast, show different patterns depending on their developmental state. For example, in 

contrast to 4-month-olds, 10-month-olds differentiate cats from dogs when familiarized 

with the stimulus set used by Quinn et al. (1993) with an encompassing stimulus 

distribution (Furrer and Younger, 2005).  

Can autoencoders capture this developmental change? Westermann and 

Mareschal (2004) showed that this might be possible by creating more precise stimulus 

representations with age. They proposed that the tuning of receptive fields in early visual 

processing pathways might become more precise over development. In an autoencoder, 
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the connections between the hidden layer and the input and output layers can be 

implemented as receptive fields. These receptive fields can be narrowed to reduce 

overlap among connections. This decreases the probability that a novel stimulus will 

excite neurons tuned to a familiar stimulus. Westermann and Mareschal showed that 

more precise feature representations can capture developmental change in infants’ 

relational-based category learning. Although this is an intriguing concept, it is unclear 

what mechanism would underlie such tuning changes.   

Another limitation of autoencoders is that they do not capture the familiarity-to-

novelty shift evident in some empirical studies with infants (French et al., 2004). A 

different type of network, the autoassociator, does capture familiarity effects. I turn to 

this class of neural networks below.   

Autoassociators. An autoassociator consists of a single bank of interconnected 

nodes, and, like autoencoders, learns to reproduce an input pattern (see Sirois, 2004 for a 

review). The input to each node is a single feature value of a stimulus, such as a pixel in 

an image of a human face. Over a number of iterations, the model learns to reproduce the 

input pattern.  

Sirois and Mareschal (2004) used an autoassociator to construct a model of infant 

habituation. The model—HAB (for Habituation, Autoassociation, and Brain)—consisted 

of coupled cortical and hippocampal autoassociative networks sandwiched between 

identical input and output layers. In this interacting systems model, input is relayed 

through a bank of thalamic neurons to the cortical network and the hippocampal network. 

The cortical network learns to reproduce the input while the hippocampal network learns 

to selectively inhibit known input. The cortical and hippocampal networks are also 
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connected to a bank of output nodes that represent the same feature values as the input 

nodes. HAB effectively captured the familiarity-to-novelty shift from the preferential 

looking paradigm. HAB also captured developmental change in the rate at which infants 

shift from a familiarity to a novelty preference by strengthening the connection weights 

from the cortical to hippocampal network as well as the connection weights from the 

cortical network to the output layer. This effectively produced an increase in processing 

speed. Thus, a major accomplishment of HAB is that it describes how developmental 

changes in processing speed might emerge. It is notable that with training, an 

increasingly smaller number of nodes within autoassociators become capable of 

recognizing an entire stimulus pattern distributed across nodes. In this sense, processing a 

stimulus and representational precision happen together. It is unclear whether this feature 

of autoassociators, such as HAB, enables them to simultaneously capture developmental 

change in processing speed and discrimination in infant visual recognition tasks.  

Dynamic Neural Fields. Autoencoders and autoassociators are quite good at 

capturing the link between the stimulus context and looking, but they have not captured 

the link between the task context and looking. To take a step in this direction, Schöner 

and Thelen (2006) used a different class of models – Dynamic Neural Fields (DNFs). 

DNFs consist of layers of neurons organized by functional topography such that each 

neuron responds maximally to a preferred stimulus and less robustly to similar stimuli. 

Typically, DNF models consist of reciprocally coupled layers of excitatory and inhibitory 

neurons. The evolution of neuronal activation in these layers over time captures the 

evolution of behavioral decisions to, for instance, fixate a stimulus.  
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Schöner and Thelen (2006) proposed a simple DNF model that consisted of a 

collection of similarly tuned excitatory and inhibitory neurons sampled from sites along a 

continuous metric dimension (e.g., color). In this model, each excitatory neuron was 

maximally excited by a particular feature value (e.g., blue) and partially excited by 

similar feature values (e.g., aqua). Suprathreshold activation in the excitatory layer drove 

looking and also drove the buildup of activation in an inhibitory layer, which evolved 

over a slower time scale. As a stimulus was repeatedly presented to the model, inhibitory 

activation accumulated, suppressing activation in the excitatory layer and producing 

habituation. The model dishabituated when a novel stimulus activated a relatively 

uninhibited excitatory neuron.  

The DNF model was intentionally simple. Despite this, it accounted for a complex 

empirical data set thought to reflect the precocious knowledge of young infants. This 

highlighted that infants’ performance in looking tasks emerges from interactions between 

the developmental state of infants, the task context, and the stimulus context. An 

important limitation of the DNF model, however, is that it captures habituation dynamics 

via an inhibitory long-term memory and retains no excitatory memory for stimuli 

experienced during habituation. Although inhibition is certainly involved in habituation, 

learning in looking tasks reflects excitatory long-term memory formation and knowledge 

acquisition (see Oakes, Horst, Kovack-Lesh, & Perone, 2008; Sirios & Mareschal, 2004). 

Summary of Theoretical Survey and the Need for a New Theory 

Although the three classes of neural network models reviewed above move 

beyond earlier conceptual theories, they share three limitations that a theory of infant 

looking and memory formation must overcome to achieve a richer understanding of the 
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link between looking and cognitive dynamics. The first limitation is that these models 

assume memory formation is a gradual, continuous process. This assumption stems from 

the finding that infants exhibit a familiarity preference after brief periods of 

familiarization, a null preference after longer familiarization lengths, and a novelty 

preference after prolonged exposure. Roder, Bushnell, and Sasseville (2000; see also 

Colombo, Mitchell, & Atwater, 1990), however, proposed that the gradual transition from 

familiarity to novelty is an artifact of averaging across infants. More specifically, they 

proposed that individual infants do exhibit a familiarity preference early and a novelty 

preference late in learning, but variation in the time course of the familiarity-to-novelty 

shift across individuals is responsible for null preferences at the group level. Indeed, they 

found that infants rarely exhibited a null preference between familiarity and novelty 

preferences. Instead, the transition from exhibiting a familiarity preference to exhibiting a 

novelty preference occurs as quickly as from one trial to the next. This finding suggests 

that memory formation transitions from an encoding phase to a memory phase non-

linearly. A theory of infant looking and memory needs to explain how non-linear 

transitions in looking arise. 

The second limitation of these models is that they have not captured 

developmental change in processing speed and discrimination within the same system. 

These models, then, do not specify whether change in these abilities arise from the same 

or different mechanism. Historically, models have been special purpose – designed to 

capture one empirical data set. Thus, while one architecture and process is used to capture 

developmental change in processing speed, such as Sirois and Mareschal’s (2004) HAB, 

another architecture is used to capture developmental change in discrimination, such as 
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Westerman and Mareschal’s (2000) autoencoder. This provides only a limited view of the 

central question tackled in this thesis: do developmental changes in processing speed and 

discrimination arise from the same or different mechanism? Probing this question 

requires that both phenomena be captured by a single architecture.   

The last and perhaps most crucial limitation of these models is that they all treat 

looking as a behavioral output of cognitive processing instead of as the active behavior 

that it is. This is not consistent with evidence that looking actively structures learning: 

studies that directly manipulate how infants distribute their looks through time change 

what infants learn. Across two critical experiments, Jankowski et al. (2001) showed that 

how an infant looks at a stimulus affects memory formation, recognition, and novelty 

detection. In the first experiment, they showed that individual differences in looking 

generalized across stimulus contexts. During a pretest phase, infants were presented with 

pairs of identical stimuli that consisted of an arrangement of geometrical shapes. The 

arrangement of shapes naturally segregated into top and bottom portions, which, across 

the two stimuli, created four quadrants. After the pretest phase, infants were familiarized 

with a different pair of identical stimuli that also consisted of an arrangement of 

geometrical shapes segregated into top and bottom portions. Infants who exhibited short 

looks and frequently switched gaze between the two stimuli during the pretest phase also 

exhibited a similar style of looking during familiarization. At test, short looking infants 

exhibited a novelty preference and long looking infants exhibited no preference.  

In the second experiment, Jankowski et al. showed that infants who exhibited long 

looks during the pretest phase and were induced to exhibit short looks during the 

familiarization phase recognized the stimulus and exhibited a novelty preference. To 
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induce short looks, a light was illuminated in a different quadrant once every second 

during familiarization. Thus, an experimental manipulation of how infants distribute their 

looks affected memory formation, recognition, and novelty detection. Theories of infant 

looking and memory must, therefore, capture the contribution of looking to memory 

formation while also capturing the reliable nature with which looking indexes cognitive 

processes. 

How might this challenge be met? A series of recent studies has examined 

looking as an interesting exploratory behavior in its own right and shed new light on 

looking as an active behavior. To capture the exploratory dynamics of infant looking and 

looking away, Robertson, Guckenheimer, Masnick, and Bacher (2004) proposed a simple 

dynamical systems model. The model consisted of a single bi-stable unit that, when 

above zero, was said to be looking and, when below zero, was said to be looking away. 

Noise and a small bias to enter the looking state produced a stochastic, oscillatory pattern 

of looking and looking away. This simple model captured the looking dynamics of 4-

week-old infants situated in front of an array of toys including the transition rate between 

looking and looking away, look duration, and look away duration. This implementation 

of looking is shown schematically in Figure 1B. Here, looking is an exploratory system 

and the second-to-second dynamics of looking emerge from a confluence of factors that 

can include content in the world (e.g., stimuli in the task space) and the intrinsic 

dynamics of the looking system itself (e.g., noise, bias).  

In Chapter 3, I will propose a new dynamic systems theory of infant looking and 

memory formation that combines the insights from conceptual and neural network 

models with the work of Robertson and colleagues. The general theoretical proposal is 
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pictured in Figure 1C. Here, looking is one component of an autonomous, dynamic 

exploratory system that learns by actively behaving in an environment in real time. The 

infant experiences the world by looking at it, and the maintenance or release of fixation 

depends on the content of the world and the state of the infant’s cognitive system at that 

moment in time. I formally build this exploratory system using dynamic neural fields. I 

show that this model overcomes the three limitations of existing neural network models – 

it captures non-linear changes in memory formation, specifies the mechanisms that 

underlie processing speed and discrimination within a single system, and links 

exploratory looking to cognitive dynamics.   

My theory shares core concepts with the conceptual and neural network theories 

described above. In particular, all theories of infant looking and memory posit that 

memory formation happens over time and that memory formation for a stimulus enables 

infants to recognize it and seek novelty. However, my theory is committed to a different 

view of looking than existing conceptual and neural network theories. In my theory, 

looking is an active behavior that acts as a perceptual gate into the cognitive system. In 

this way, the temporal dynamics with which input is given to the cognitive system for 

processing is controlled by the act of looking and not the mere presence of a stimulus in 

the task space. This theoretical commitment is closely tied to a particular formal 

implementation. I implement looking as a stochastic, dynamical system in the spirit of 

Robertson et al. (2004), who were able to capture the temporal dynamics of infants’ 

looking and looking away. In my theory, a bias to look and look away emerges from a 

second commitment centered on the interaction between a perceptual system that encodes 

stimuli and a working memory system that maintains information about the stimulus. In 
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particular, a bias to look arises from neural activity associated with encoding of a 

stimulus. A bias to look away arises from the emergence of robust memory that 

suppresses encoding. This resembles the attention-holding process of Cohen’s (1973) 

dual-process model. However, the dual-process model was descriptive. In Chapter 3, I 

examine whether formally implementing active, stochastic looking and an attention-

holding process in a DNF model leads to novel insights about infant looking and 

memory.  
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CHAPTER 3 

A DYNAMIC SYSTEMS THEORY OF INFANT LOOKING AND                                            

MEMORY FORMATION 

Dynamic systems theory is a general set of concepts that describe behavior as the 

organization of multiple, interacting components over time around attractor states. There 

are three broad systems concepts that have been applied to the study of cognition and 

development (for a discussion, see Smith & Thelen, 2003). These concepts capture infant 

looking and memory well. First, time scales are continuous with each other. For instance, 

the second-to-second looking behavior of an infant is continuous with looking dynamics 

over the learning and developmental time scales. Second, multiple factors influence the 

behavior of a system. The task context, stimulus context, history of experience, and 

developmental state of the infant all influence how infants look and remember in real 

time in the laboratory. Lastly, systems are open to the environment in which they behave. 

Looking appears to be a gate through which the environment influences cognition. This 

might be the very reason why looking is such a powerful behavior for caregivers of at-

risk infants to act upon—it is the gateway through which positive changes in basic social 

and cognitive abilities can emerge.  

One challenge in applying systems concepts to the study of cognitive 

development is specifying the system components and attractor states under study. The 

dynamic field theory (DFT) has emerged to meet this challenge. The DFT is a set of 

systems concepts that capture embodied cognitive dynamics (for reviews see Schöner, 

2009; Spencer, Perone, & Johnson, 2009; Spencer, Simmering, Schutte, & Schöner, 

2007). A central goal of the DFT is to specify the link between sensorimotor experience 
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and cognition. This goal has been achieved by formalizing systems concepts in dynamic 

neural field (DNF) models. DNFs belong to a larger class of bi-stable attractor networks 

(Amari, 1977; Wilson & Cowan, 1972). Such models have been used previously to 

capture the mapping between real-time neural dynamics and behavior in a variety of 

domains including the planning and execution of eye movements (Kopecz & Schöner, 

1995; Wilimizig, Schneider, & Schöner, 2006), the planning of reaching movements 

(Bastian, Schöner, & Riehle, 2003), visual working memory for features (Johnson, 

Spencer, & Schöner, 2009; see also Johnson, Spencer, Luck, & Schoner, 2009), and 

spatial working memory (see Spencer et al., 2007 for a review). DNFs have also 

effectively captured the co-development of neural and behavioral processes in the 

Piagetian A-not-B task (Thelen et al., 2001) and spatial working memory tasks (Schutte 

& Spencer, 2009; Schutte, Spencer, & Schöner, 2003; Simmering, Schutte, & Spencer, 

2008). These previous applications demonstrate that DNFs provide an effective set of 

concepts that link cognition and behavior in real-time, over learning (e.g., Lipinski, 

Simmering, Johnson & Spencer, 2010; Lipinski, Spencer, & Samuelson, 2010), and over 

development (e.g., Schöner & Thelen, 2006). 

In this chapter, I propose a DNF model that captures the link between looking and 

cognitive dynamics. The model is based on a model of visual working memory and 

change detection proposed by Johnson et al. (2009). In their model, multiple items (e.g., 

colored squares) are encoded in parallel. Encoding generates a working memory 

representation that can be maintained in the absence of input. The maintenance of items 

in working memory, in turn, inhibits encoding of remembered stimulus values. 

Consequently, when old items are re-presented in the task space, they are inhibited from 
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building a new perceptual representation—the system recognizes them. By contrast, new 

items have stimulus values that fall outside of the inhibited stimulus regions. This results 

in the formation of a new perceptual representation and the system detects the novelty.  

To capture infant looking and memory formation, two additions to this model 

were needed. First, a form of Hebbian learning (see Lipinski et al., 2010; Spencer, 

Dineva & Schöner, 2009) was added that enables the model to respond more robustly to 

previously encoded items and facilitates working and long-term memory formation. 

Second, a fixation system was added that looks and looks away from locations at which 

task relevant stimuli appear, opening a perceptual gate into the encoding and working 

memory system.  

Central Concepts of Dynamic Neural Fields 

A DNF consist of layers of neurons organized by functional topography along 

continuous, metric dimensions (e.g., color). Neuronal activation in DNFs is based on the 

space code principle from neurophysiology in which neighboring neurons mutually excite 

each other. In addition, locally excited neurons stimulate similarly tuned inhibitory 

interneurons which implement a form of lateral or surround inhibition. This creates a 

local excitatory / lateral inhibitory activation profile, a ubiquitous form of neural 

interaction in the nervous system that stabilizes motor behavior and neural 

representations within the cognitive system (Fuster, 2003). Neuronal activation in DNFs 

evolves continuously in time, and the state of a DNF at any point in time depends on its 

own intrinsic dynamics and the inputs impinging on them. Amari (1977) originally 

analyzed five qualitatively different attractor states that DNFs can enter. Below, I 
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describe three of those states and their cognitive function in the context of infant looking 

and memory formation.  

The first attractor state that DNFs can enter is the resting state in which neuronal 

activation stably rests at a baseline level of activity. The DNF proposed here transitions 

into and out of the resting state and two additional attractor states, the self-stabilized and 

self-sustaining states. When a stimulus is present, DNFs can enter a self-stabilized state, 

in which selectively tuned neurons create a localized peak of activity in response to 

stimulus properties. This peak is a perceptual representation of a stimulus at the level of 

the neural population. Critically, a self-stabilized peak can only maintain suprathreshold 

levels by the continued presence of input (see, e.g., Johnson et al., 2009).  

Figure 2A-E illustrates how the self-stabilized state reflects a form of perceptual 

encoding. It also illustrates how Hebbian learning can influence encoding at recently 

stimulated sites. Across panels A-E, a stimulus (see top row) is presented to an excitatory 

layer of neurons shown in row two. I will refer to this layer of neurons as a perceptual 

field (PF). Initially, no stimulus is present in Figure 2A (see top row). Consequently, PF 

is in the resting state. When a stimulus is presented (2B), it excites selectively tuned 

neurons in PF. When neurons in PF are suprathreshold (i.e., above zero), they project 

excitatory input to a narrow range of neighboring neurons. They also project to a narrow 

range of similarly tuned neurons in an Inhibitory layer (Inhib; not shown for simplicity), 

which, in turn, project broad inhibition back to PF. This creates a peak with a locally 

excitatory / laterally inhibitory activation profile (2B). This peak of activation leaves a 

trace in a Hebbian layer (HLPF), which effectively raises the baseline level of activity at 

previously excited sites and enables those neurons to respond more strongly upon re-
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presentation of the stimulus (compare B and D). The light gray bump of activation at the 

bottom of the x-axis shows the contribution of HL, the strength of which is represented 

on the right y-axis.   

When local excitatory / lateral inhibitory interactions are stronger, DNFs can enter 

the self-sustaining state in which recurrent local excitatory connections are sufficiently 

strong to maintain activation peaks in the absence of stimulation. This attractor state has 

been used to capture the maintenance of information in working memory (Johnson et al., 

2009; Schutte & Spencer, 2009; Simmering, 2008; for related models, see Compte, 

Brunnel, Goldman-Rakic, & Wang, 2000; Edin, Macoveanu, Olesen, Tegner, & 

Klingberg, 2007) and is generally consistent with findings showing that neurons exhibit 

elevated levels of discharge during delays (Funahashi, Bruce, & Goldman-Rakic, 1989).  

The self-sustaining state is illustrated in the bottom row of Figure 2. Across 

panels F-J, the stimulus shown in the top row is presented to an excitatory layer of 

neurons as before. Now, however, I have labeled the field in the bottom row as a working 

memory (WM) layer to reflect the stronger neural interactions. Initially, no stimulus is 

present and WM and Inhib (not shown) are in the resting state (2F). When a stimulus is 

presented, WM enters the self-stabilized state (2G), and, as before, activation returns to 

its resting level when the stimulus is removed (2H). When the stimulus is presented 

again, the contribution of the Hebbian layer (HLWM) is sufficient for WM to enter the 

self-sustaining state. Consequently, a peak of activation is built (2I) that is maintained 

even though the stimulus is removed in panel J—the field maintains a working memory 

for the stimulus in the absence of external stimulation.  
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The 3-layer+ Model 

The DNF model I propose takes as its starting point the 3-layer model proposed 

by Johnson et al. (2009) to capture visual recognition and change detection in adults. The 

one central difference is that visual recognition in infancy unfolds over a slower time 

scale; consequently, learning processes play a more central role in the formation of visual 

preferences in infancy. The basic concepts behind this model are shown in Figure 3. This 

figure shows a simulation of the 3-layer architecture from Johnson et al. (2009) with a 

Hebbian layer added to PF and WM (HLPF and HLWM). The second row shows PF with 

relatively weak neural interactions, and the bottom row shows WM with stronger neural 

interactions. These two layers are coupled to a shared layer of inhibitory interneurons 

(Inhib), which is not shown for simplicity. As in Johnson et al., input (see top row) is 

passed strongly into PF and weakly into WM. In addition, above-threshold activation in 

PF stimulates similarly tuned excitatory neurons in WM (see blue arrow from PF to 

WM). Finally, the light gray line (right y-axis) shows the contribution of Hebbian 

learning to both layers.  

When a stimulus is presented to the 3-layer+ model, a self-stabilized peak arises 

in PF, encoding the stimulus and propagating strong excitation into WM (3A). When the 

stimulus is removed, a stable WM peak maintains a representation of the stimulus in its 

absence (3B). Notice that the maintenance of a stable WM peak inhibits similarly tuned 

neurons in PF via the shared layer of inhibitory interneurons (the red dashed arrow 

highlights this functional connection). When an identical stimulus to the one being 

maintained in WM is presented, activation in PF is relatively weak (3C). This 
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suppression of encoding is the mechanism of visual recognition in the model. When a 

novel stimulus is presented, by contrast, it excites neurons in PF that are relatively 

uninhibited and a self-stabilized peak emerges (3D). This is the basis of novelty detection 

in the model. Note that once the new peak emerges in PF, a new peak is added in WM as 

well; thus, this model captures the continual dialog between perceptual encoding and 

working memory formation. 

Below, I provide a more detailed overview of the 3-layer+ model.  

Perceptual Field (PF). The equation for PF is:  
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with its position centered at xcenter, width !, and strength c. The gating function, !(t), 

denotes that the stimulus input is weighted with a 1 during time intervals when the 

stimulus is “on” and 0 otherwise.  

 The neural dynamics within PF are also influenced by excitatory within-layer 

neural interactions,
 

. These interactions are specified by the 

convolution of a Gaussian local excitation profile,  [equation 2 without the 

gating function, !(t)], which determines the neighborhood across which excitatory 

interactions propagate, and a non-linear sigmoidal threshold function, , 

which dictates that only neurons with above-threshold activation participate in the locally 

excitatory interactions. The width of this neural neighborhood is relatively narrow. The 

sigmoidal function is specified by: 

,                  (3) 

where !  is the slope of the sigmoid. ! was set to .05 for all simulations here.   

In addition to local excitatory interactions, the neural dynamics in PF are 

influenced by inhibition, . This inhibition is generated by the 

activity of neurons in the inhibitory layer (v) [see equation 5 below]. As with excitatory 

interactions, inhibitory interactions in PF are projected across a neural neighborhood 

specified by a Gaussian, , and only neurons with above-threshold activity in 

the inhibitory layer, , contribute to interactions. In contrast to within layer 

excitatory neural interactions, the width of this neural neighborhood is broad. The cross-
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layer interaction, then, gives rise to a locally excitatory / laterally inhibitory activation 

profile.  

Activation in PF is influenced by input from a Hebbian layer, 

. This input is determined by the convolution of a Gaussian 

projection, , which determines the neural neighborhood across which Hebbian 

traces have an influence, and the strength of the trace within the Hebbian layer,  

(see equation 7).  

Finally, activation in PF is influenced by the addition of spatially correlated noise: 

             

Noise was presented to PF by convolving a field of white noise, , with a Gaussian 

kernel, . In spatially correlated noise, the strength of noise introduced to one 

neuron is linked to the strength of noise of a neighboring neuron 

Inhibitory Field (Inhib). The excitatory layer of PF is reciprocally coupled to an 

inhibitory layer, Inhib (v). The equation for the inhibitory layer is: 
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and WM, . These inputs are projected across a neural 

neighborhood specified by each Gaussian projection, , and only above-threshold 

neurons in PF and WM contribute to these cross-layer interactions as determined by the 

sigmoidal threshold function, !. Finally, an independent source of spatially-correlated 

noise was added to the inhibitory layer (see equation 4). 

 Working Memory Field (WM). The excitatory layer of the WM(w) field is 

specified by the following equation:  

 

 

 

 

 

                                                              (6) 

This equation is identical to the equation for PF (see equation 1) with the following 

exceptions. First, the input, S(x,t), is weighted by a strength parameter, c, which was set 

to 0.05 for all simulations. Thus, WM received weak direct input, consistent with 

Johnson et al. (2009). Second, WM receives an excitatory projection from PF(u), 

, given by the convolution of a Gaussian projection and the 

sigmoidal threshold function.  

 Hebbian Layers (HL). Activation within PF and WM is influenced by traces in 

associated Hebbian layers. The equation for the Hebbian layer associated with PF is:  
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(7) 

 

where  is the rate of change of activation for each site in the Hebbian layer, x, as 

a function of time, t. The constants  and 
 
set the time scale during which 

activation traces accrue and decay, respectively. Activation in the Hebbian layer only 

accrues when neurons in PF are above threshold, .  was set to 10,000, and  

was set to 50,000.   

Fixation System 

Fixation System: The 3-layer+ model described above captures the perceptual, 

working memory, and long-term memory processes hypothesized to underlie memory 

formation, visual recognition, and discrimination in infancy. The next step is to specify 

the process that underlies fixation dynamics in infancy. The fixation system consists of a 

single dynamical node that looks at and looks away from a center location in the task 

space at which a stimulus can appear. The behavior of the fixation system over time is 

determined by its own intrinsic dynamics and noisy inputs impinging on it. The fixation 

system is given by the following equation: 
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and an “on” state over time. This non-linear behavior is mediated by the sigmoidal 

threshold function, , which is weighted by a self-excitatory gain parameter, . 

In addition, the fixation system receives two inputs: , a strong, transient input that 

when present quickly moves the fixation system from a negative “off” state to a positive 

“on” state, and , a low-level input that signals the presence of a stimulus at a center 

location. At every time step, white noise was added to .  

 The final contribution to the fixation system comes from a dynamic resting level 

that facilitates transitions between “on” and “off” states. In particular, the resting level of 

the fixation system, hf, is governed by the following equation:  

          (9) 

The resting level of the fixation system decreases toward a low attractor, , when the 

current activation of the fixation system is above threshold (i.e., above zero), and it 

moves toward the baseline level,  , when activation in the fixation system is below 

threshold. Thus, the fixation system is biased toward the “off” state when in the “on” 

state, and it is biased toward the “on” state when in the “off” state. This type of bias helps 

create a stochastic, oscillatory pattern of looking (“on”) and looking away (“off”) through 

time.  

 Figure 4 shows the behavior of the fixation system over a 20 s period. Figure 4A 

shows the presence of a stimulus at a center location in the task space and the noisy input 

(B) it presents to the fixation system over time (C). Initially, there is no input and the 

fixation system is at its resting level (D) and looking away (E). In habituation 

experiments, there is commonly an attention-getter (e.g., periodic blinking light) at the 

location a stimulus will appear. The attention-getting stimulus is approximated with a 
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strong, transient input (cboost) to the fixation system (see initial spike in B). This drives 

activation in the fixation system to an above-threshold looking state. When a stimulus is 

present on the display (e.g., within a habituation trial), a noisy low-level input is 

presented to the fixation system signaling the presence of a stimulus at a center location. 

The combination of the continuous presence of a low-level input and the self-excitatory 

dynamics of the fixation system bias the system to remain in the looking state.  

While in the looking state, there are two ways in which the fixation system can re-

enter the looking away state. One source is random fluctuations in noise that 

spontaneously drive the fixation system below threshold. A second source is the dynamic 

modulation of the resting level. Strong activation in the fixation system dynamically 

drives the resting level to its low attractor. As the resting level decreases, the self-

excitatory dynamics of the fixation system are insufficient to maintain above-threshold 

activation. Once the fixation system is below threshold and looking away, the system 

dynamically returns to its higher resting level, facilitating the shift back into the fixation 

state (via noise, input, and self-excitatory dynamics).  

As can be seen in Figure 4, these dynamics enable the fixation system to 

stochastically oscillate between looking and looking away (D), producing fixations of 

variable duration (E). These dynamics resemble the behavior of the simple dynamical 

system used by Robertson et al. (2004) and the exploratory dynamics of some robotic 

systems (Mobus & Fisher, 1999). Note that there are some differences between this 

fixation system and the one used by Robertson et al. First, the noise within this system is 

introduced via noisy input, whereas noise in their system was intrinsic. These types of 

noise differ only during the inter-trial interval when no task relevant input is present in 
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the task space. The use of noisy inputs was based on previous work using noisy inputs to 

capture infants’ spontaneous reaching behavior in the Piagetian A-not-B task, which 

depends on available input sources (Dineva et al., 2008). Second, hysteresis within this 

fixation system is created by self-excitatory dynamics, when entering the looking state, 

and resting-level dynamics, when entering the looking away state. In Robertson et al’s 

(2004) model, hysteresis was introduced with a small bias to remain in the recently 

entered state.  

The Integrated Architecture 

Coupling the fixation system to the 3-layer+ model creates an autonomous 

exploratory system that encodes and forms memories of a stimulus as it looks. The 

fixation system acts as a perceptual gate into the neural system such that encoding of a 

stimulus, and, reversely, the contribution of encoding to fixation, is only possible when 

the fixation system is actively looking at it. Gating was accomplished by modifying the 

inputs to PF (see S(x,t) in equation 1) and WM (equation 6) with the thresholded 

activation of the fixation system, that is, S(x,t) was replaced by S(x,t)!(f). Support for 

fixation while encoding a stimulus was accomplished by feeding the weighted sum of 

activation in PF into the fixation system. This integration can be seen in a modified 

equation 8:  

       (10) 

where  is the weighted sum of above-threshold activation in PF across 

all sites, x, at time, t. This term is weighted by the thresholded activation of the fixation 

system , which ensures neural activity in PF only contributes to the fixation system 

when in the looking state.  
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Figure 5 illustrates how the DNF model autonomously encodes and forms a 

memory as it looks at and looks away from a stimulus over time. At the top is a single 

stimulus in the task space (A). The next panel shows the behavior of the fixation system 

as it looks at and looks away from the stimulus (B) over the course of a 200 s simulation. 

Initially, the model exhibits several long bouts of looking as the fixation system 

maintains above threshold activation (see C). Over time, look durations become 

increasingly shorter as the fixation system pierces threshold, enters the looking state, but 

quickly looks away.  

The neural dynamics of PF and WM that underlie these looking dynamics are 

shown in Figures 5D-H, which shows the state of these fields at different points during 

familiarization (30s, 40s, 88s, 96s, and 160s). Figure 5D shows the state of PF and WM 

as well as the long-term memory contributions as the model looks at the stimulus early in 

learning. Activation in PF is strong and a peak in WM is beginning to emerge. The robust 

peak in PF helps support the long look by the fixation system around 30 s (see C). Figure 

5E shows the state of PF and WM while the model is looking away early in learning (at 

40 s; see C). Activation in PF and WM has returned to sub-threshold levels after the 

fixation system spontaneously looked away.  

As the model continues to look at and look away from the stimulus, the 

contribution of HLWM to WM increases (F). Consequently, when the model looks away 

from the stimulus at 96 s (G), a WM peak has emerged, producing strong inhibition in PF 

(see inhibitory trough in PF in panel G). This inhibition, in turn, suppresses the formation 

of a peak in PF when the model looks at the stimulus again late in learning (H). This 
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suppression of encoding quickly releases fixation, look durations become short, and the 

model accumulates more time looking away. The model habituates to the stimulus.  

Below, I present a set of simulations that illustrate the processes of habituation 

and dishabituation in a single presentation habituation task. A theory of infant looking 

and memory needs to capture infant looking behavior in a particular task and stimulus 

context. In Chapters 4 and 5, I show that the DNF model is up to this challenge. Here, my 

simulations aimed to illustrate the basic theoretical concepts of the DFT of infant looking 

and memory formation by capturing a set of established empirical facts from the infant 

habituation literature. In particular, I focused on empirical results that show 

developmental changes in looking, memory formation, and discrimination. With age, 

infants form memories more quickly, which is associated with faster habituation, less 

looking time accumulated across the habituation phase, and a decrease in look duration 

(e.g., Rose et al., 2001; Rose et al., 2002; Wetherford & Cohen, 1973; for reviews, see 

Colombo & Mitchell, 1990; Rose et al., 2007). With age, infants also exhibit an increased 

ability to discriminate between similar familiar and novel items, that is, with age infants 

dishabituate to both similar and dissimilar novel items (e.g., Brannon et al., 2006; 2007).  

Simulation results were based on 200 simulations of the same parameter settings. 

Preliminary simulation work demonstrated that 200 simulations per set was sufficient to 

produce replicable simulation results in the presence of random fluctuations across 

simulations and capture the stable dynamics of the system specified by the parameter 

settings. Trial durations were 20 s and inter-stimulus intervals were 5 s. There were three 

stimulus inputs. One input was the habituation stimulus, centered at site 150 in a field 

consisting of 360 neurons. The other two stimuli were test stimuli: a close test that 
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differed from the habituation stimulus by 20 neurons (site 170) and a far test that differed 

from the habituation stimulus by 40 neurons (site 190). The habituation stimulus was 

presented across 10 trials followed by one test trial with the close test and one with the 

far test. I illustrate the basic concepts of habituation and dishabituation using a parameter 

set that will be referred to as the “old infant model”. After that, I will show how the DNF 

model captures developmental change in habituation and dishabituation. Model 

parameters are listed in Table 1.  

Mechanisms of Habituation and Dishabituation  

In the DNF model, looking habituates as a stimulus is encoded and a stable WM 

peak is formed across successive presentations. Figure 6 illustrates this process. When the 

model looks on trial 1, activation in PF is strong and the model begins to accumulate 

activity in HLPF (A). Strong activation in PF supports looking, leading to few looks, long 

look durations, and high levels of total looking time. By trial 4 (C), the model forms 

robust peaks in both PF and WM. Consequently, Hebbian learning associated with WM 

increases in strength. This has two consequences. First, excitation in WM produces 

stronger activation of the inhibitory interneurons in Inhib, which begins to suppress 

activation in PF. This is evident by trial 4 (see inhibitory trough around stimulus site 150 

in panels C and D). Consequently, PF provides weaker excitatory input to the fixation 

system over trials, and the model encodes the stimulus for increasingly shorter durations. 

This causes look durations and looking time to decrease over trials. Second, the 

activation increase in WM causes a stable WM peak to emerge. This enables the system 

to maintain a representation of the stimulus in the absence of looking and during inter-

stimulus intervals. For instance, there is a WM peak in the bottom panel of Figure 6D 
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even though no stimulus is present during the ISI. This stable WM peak impacts activity 

in PF upon subsequent trials. For instance, in Figure 6E, even though the model fixates 

the stimulus, activity in PF is weak due to the strong inhibition generated by WM.   

To highlight the stable dynamics of the system as specified by the parameter 

settings, Figure 6G shows the mean state of PF and WM across the entire simulation set 

at the onset of each habituation trial. When the model begins each trial early in learning, 

the contribution of HLPF to PF facilitates encoding (see dashed blue line in top panel of 

G). Late in learning, HLWM accumulates and a stable WM peak emerges and produces 

strong inhibition in PF. Consequently, when the model begins successive trials late in 

learning, the stimulus excites strongly inhibited neurons and establishes a relatively weak 

peak in PF. Habituation, then, arises from a transition in the model from encoding early 

in learning to the active maintenance and recognition of the habituation stimulus late in 

learning. In Figure 6G, this transition can be seen in the activation profile between trials 4 

(dashed red line) and 5 (solid purple line) when, on average, the model acquires a stable 

WM peak and inhibition in PF becomes relatively strong. 

The looking behavior of the old infant model across simulations is shown in 

Figure 7. The model exhibited a decrease in looking time across trials (A), which happens 

as the model more frequently looks and looks away from the stimulus (B) and look 

durations become shorter (C). These changes in looking dynamics across trials are 

consistent with the empirical observation that infants exhibit shorter look durations across 

trials (Cohen, 1973; see also Clearfield & Fisher, 2009; Ruff, 1975).  

Looking time to novel stimuli following the habituation phase is most often the 

behavioral measure of interest in studies using looking to measure infants’ developing 
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perceptual and cognitive abilities. In the DNF model, dishabituation happens when a 

novel stimulus excites neurons in PF to above-threshold levels and this activation is 

sustained long enough to support continued looking by the fixation system. When a novel 

stimulus excites neurons that are relatively uninhibited in PF, a robust peak emerges in 

PF and this field provides strong excitatory input to the fixation system that maintains 

fixation. Looking time increases, and the model, like infants, is said to dishabituate—the 

model discriminates between the habituation and novel stimulus.  

To illustrate the mechanisms underlying discrimination in the model, I tested the 

model with a similar stimulus (close test) and a dissimilar stimulus (far test). The looking 

behavior of the old infant model to the close and far tests is shown in Figure 7A. As can 

be seen, the old infant model exhibits an increase in looking to the close test and 

relatively higher levels of looking to the far test. Figure 7D-E shows the state of PF and 

WM when the old infant model is looking at the close test (D) and far test (E). When the 

model looks at the far test stimulus, the stimulus excites relatively uninhibited neurons in 

PF. A robust peak forms in PF, which provides strong excitatory input to the fixation 

system and supports continued looking. When the model looks at the close test stimulus, 

support for fixation from PF arises from two sources. First, the strong lateral inhibition 

surrounding the peak in WM slows updating of WM for novel stimuli that excite those 

neurons. This prolongs encoding of the stimulus in PF, which, in turn, helps PF support 

longer looks to the close novel test stimulus. Second, strong excitatory connections 

within PF via the Hebbian layer sustain suprathreshold activation, which also helps PF 

support longer looks to the close test stimulus.  
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In summary, the DNF model establishes a link between looking and cognitive 

dynamics. As the model encodes a stimulus, looking time is high because strong activity 

in PF gives rise long look durations and few looks away. As the model forms a working 

and long-term memory for a stimulus, looking time is low because the inhibition in PF 

gives rise to short look durations and many looks away. The DNF model also specifies 

the mechanisms that underlie discrimination. The model dishabituates when a novel 

stimulus excites relatively uninhibited neurons in PF. Moreover, the level of 

dishabituation depends on the metric similarity of the novel item to the familiar item. 

These simulation results are consistent with empirical studies examining infants’ looking 

to novel stimuli that vary in similarity from the habituation stimulus. For example, 

Brannon et al. (2006) found a linear relationship between dishabituation and the 

similarity of the novel stimulus to the familiar stimulus.  

Developmental Change In Looking and Discrimination 

Across the first year, infants habituate more quickly, exhibit shorter look 

durations, and are able to discriminate between similar familiar and novel stimuli. The 

old infant model captures this pattern of results. Here, I propose and implement a 

developmental hypothesis that captures the behavior of relatively younger infants. In 

particular, I generalize the Spatial Precision Hypothesis (SPH) from the domain of spatial 

cognitive development (Schutte & Spencer, 2009; Schutte et al., 2003; Simmering et al., 

2008). The SPH posits that the strength of excitatory and inhibitory neural interactions 

increases with age. The SPH has captured developmental changes in children’s 

performance in spatial recall tasks (Schutte & Spencer, in press), as well as position 

discrimination and the Piagetian A-not-B task (Simmering et al., 2008).  
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Here, I extend the SPH to capture developmental changes in infants’ memory 

formation for visual features distributed along continuous dimensions. The SPH has not 

previously been used to capture developmental change in infant habituation. Note that I 

tested whether the neuro-developmental changes captured by the SPH produce both a 

decrease in processing speed and a reduction in discrimination. These developmental 

changes are widely viewed to arise from changes in the cognitive system. The SPH is 

consistent with this view, and below I test whether such changes are sufficient to capture 

developmental change.  

Note that there are also pronounced changes in fixation dynamics that may 

influence changes in processing speed and discrimination. For example, shifting gaze 

involves moving the body, which infants become more proficient at during the first 3 

months of life (Robertson, Bacher, & Huntington, 2001). Additionally, during the first 3 

months of life, infants gain finer control over eye movements (for a review, see Johnson 

2002). Early in development, infants’ saccades are slow and they make several saccades 

when shifting gaze from one stimulus to another. Later in development, infants’ saccades 

are faster and they make fewer saccades when shifting gaze. It is unknown whether these 

occulomotor changes and changes in motor control over the body are related, but they do 

occur during the same developmental period. Critically, improvements in motor control 

can shorten the duration with which infants look at a stimulus above and beyond changes 

in fixation dynamics that might be related to the processes of memory formation. 

Although manipulations of the fixation system in the DNF model could capture aspects 

of the developmental data reported here, I chose to ask a more constrained developmental 
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question: is the SPH—a developmental hypothesis from another research domain—

sufficient to capture developmental change in infant habituation.  

The SPH was implemented on the old infant model by decreasing the strength of 

local excitatory connections in PF (cuu) and WM (cww), as well as the strength of the 

inhibitory projection from Inhib to PF (cuv) and Inhib to WM (cwv) (see Schutte & 

Spencer, 2009). These parameter settings will be referred to as the “young infant model” 

(see Table 1).  

The dynamics underlying the looking behavior of the young infant model are 

shown in Figure 8. As can be seen in panels A and B, the young infant model is 

comparable to the old infant model at the start of habituation. Notice, however, that the 

young infant model does not sustain a WM peak during the ISI of trial 4 (see lower panel 

in D) as the older model did. By trial 7, however, a WM peak has emerged and is 

beginning to suppress activity in PF. Figure 8G shows the distribution of activation in PF 

and WM at the start of each habituation trial across the simulation set (for ease of 

comparison to the old infant model, I have reproduced Figure 6G in panel H). When the 

model begins each trial early in learning, the contribution of HLPF to PF facilitates 

encoding (see positive activation in PF early in learning in the top panel of G). Late in 

learning, HLWM accumulates and a stable WM peak emerges and produces strong 

inhibition in PF. Consequently, when the model begins successive trials late in learning, 

the stimulus excites strongly inhibited neurons and establishes a relatively weak peak in 

PF. In Figure 8G, the transition from encoding to working memory formation can be seen 

in the activation profile between trials 6 (dashed purple line) and 7 (solid green line) 
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when, on average, the model acquires a stable WM peak and inhibition in PF becomes 

relatively strong.  

Two differences between the young and old infant models are evident across 

Figure 8G-H. The first difference is that the contribution of HLPF to PF is stronger early 

in habituation in the young infant model than the old infant model. This arises from 

differences in the time course of stable WM peak formation, that is, processing speed in 

the DNF model. The frequency of trials on which the young infant model formed a stable 

WM peak across simulations can be seen in Figure 9 (black bars, young infant model and 

gray bars, old infant model). As can be seen, the distribution of trials on which a stable 

WM peak was formed shifted later for the young infant model. These differences in 

encoding and working memory formation give rise to different patterns of looking during 

habituation. This is shown in Figure 10A-C (black lines; gray lines show the old infant 

model’s performance for comparison). The young infant model exhibits a slower decline 

in looking time (A), a slower rise in the number of looks over learning (B), and a less 

steep decline in look durations relative to the old infant model (C). These developmental 

changes in looking behavior arise from the consequences of neural interaction strength. 

In particular, when interactions are weak, WM peaks emerge slowly, are smaller in 

amplitude, and they generate less inhibition early in habituation. This results in long 

bouts of looking to the habituation stimulus and a slower decline in looking. When 

interactions are stronger, by contrast, stimuli are encoded and working memories are 

established quickly. This generates a stable WM peak, more inhibition in PF, shorter 

bouts of looking to the habituation stimulus, and a relatively rapid decline in looking. 
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The second difference between the young and old infant model is that WM is less 

precise late in habituation for the young infant model than the old infant model. Strong 

neural interactions in the old model constrain the range of above-threshold neurons that 

participate in the excitatory interactions within a WM peak (Schutte and Spencer, 2009; 

for related ideas see Schutte et al., 2003). This is an emergent consequence of stronger 

cross-layer interactions between WM and Inhib. Strong excitation in WM produces 

strong activation in Inhib, which, in turn, projects strong inhibition back into WM. This 

interplay constrains which neurons rise above threshold in the excitatory WM field, 

effectively sharpening the peak in WM and creating strong lateral inhibition surrounding 

the peak (see lower panel of Figure 8H). Note that initial implementations of the SPH in 

the literature involved directly manipulating the width of excitatory and inhibitory 

connections to capture developmental changes in the precision of WM peaks (Schutte et 

al., 2003). More recently, Schutte and Spencer (2009) revealed that the precision of WM 

peaks can emerge from increases in the strength of neural interactions alone. I showed 

here that increases in the strength of neural interactions are also sufficient to give rise to 

emergent changes in the precision of WM peaks in an infant habituation context.  

The differences in the strength of neural interactions and precision of WM peaks 

also lead to differences in discrimination between similar familiar and novel stimuli. The 

looking behavior of the young infant model to the close and far tests is shown in Figure 

10A (black line). As can be seen in the figure, the young infant model exhibits habituated 

levels of looking to the close test but elevated looking to the far test. Thus, the young 

infant model fails to discriminate the close test and only shows robust discrimination to a 

very different stimulus (the far test).  
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To illustrate the mechanisms underlying the model’s looking behavior during the 

test phase, Figure 10F-G shows the state of PF and WM when the young infant model is 

looking at the close test (F) and far test (G). For comparison, Figure 10D-E reproduces 

the state of PF and WM for the old model on the close test (D) and far test (E). When the 

model looks at the close test, the stimulus excites neurons in PF that are strongly 

inhibited by the WM peak which is actively maintaining a representation of the 

habituation stimulus (see lower panel of F). Thus, the stimulus builds a relatively weak 

peak in PF and this field provides little support to the fixation system. Looking time does 

not exceed habituated levels and the model, like infants, is said to generalize. The 

mechanisms underlying dishabituation to the far test are comparable to the old infant 

model (compare Figure 10E & 10G).  

In summary, the SPH generalizes from the domain of spatial cognitive 

development to infant looking and memory for features. To this point, the DNF model 

has overcome two limitations of existing models. First, the DNF model captures looking 

as an exploratory behavior in the same spirit as Robertson et al. (2004) while also 

capturing the stable way in which looking changes over the course of learning and 

development. Note, however, that I have yet to show that looking contributes directly to 

learning. Second, the DNF model captures developmental change in processing speed 

and discrimination within the same system. Furthermore, the SPH posits that these 

changes arise from the same mechanism. Below, I show that the DNF model overcomes 

the third limitation of existing models – looking and memory formation can involve non-

linear transitions. I also show that looking contributes directly to learning. 

 



www.manaraa.com

 50 

 

Non-Linearities In Looking and Memory Dynamics 

The looking behavior of the young and old infant models shown in Figure 10A-C 

and the activation profile of the young and old infant models shown in Figure 8G-H 

highlight the stable dynamics of the DNF model across simulations. This stability, 

however, is embedded within simulation-to-simulation variation. It is within this 

variation that non-linear transitions in looking and memory formation can be observed, as 

well as the contribution of looking to learning.  

Figure 11 shows sample simulations of the young (A-C) and old (D-F) infant 

models for three indices of performance during habituation. Each simulation generally 

exhibits a decrease in looking time, an increase in number of looks, and a decrease in 

look duration across trials. Simulations of the old infant model generally show faster and 

more consistent changes in these measures relative to the young infant model. 

Nevertheless, there is striking variability across the simulations at each age. 

Importantly, all simulations were run with very same parameters. Simulation-to-

simulation variation in looking emerges over the course of habituation. A central 

contributor to this variation across simulations is variance in the time course of stable 

WM peak formation. As shown in Figure 9, some simulations form a stable WM peak 

early and others quite late. This non-linear neural event in the model can produce non-

linear changes in looking. This is illustrated in Figure 12, in which I anchored three 

indices of looking to the trial on which the model formed a stable WM peak. Figure 12A-

C shows the looking behavior of the young infant model for simulations that formed a 

stable WM peak on trials 5 (green line) and 8 (gray line), that is, for fast processing and 
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slow processing simulations, respectively. Simulations that formed a stable WM peak late 

exhibited low levels of looking, a high number of looks, and short look durations early in 

habituation. Simulations that formed a stable WM peak early, by contrast, exhibited high 

levels of looking, few looks, and long look durations early in habituation. Note that these 

differences in looking dynamics were evident on the very first trial—they reflect initial, 

random fluctuations in the fixation and cognitive systems. Critically, these initial 

fluctuations cascade into meaningful changes in learning dynamics over trials.  

Figure 12D-F shows the looking behavior of the old infant model for simulations 

that formed a stable WM peak on trials 2 (green line) and 5 (gray line). Simulations that 

formed a stable WM peak on trial 5 exhibited relatively low levels of looking time, a high 

number of looks, and short look durations early in habituation. This pattern of looking 

slows perceptual encoding, working memory formation, and long-term memory 

formation. By contrast, simulations that formed a stable WM peak on trial 2 exhibited 

relatively high levels of looking time, few looks, and long look durations early in 

habituation. These looking dynamics facilitate encoding and memory formation early in 

learning.  

There are two notable qualities to the looking dynamics in Figure 12. First, there 

is a sharp decline in looking time, a sharp increase in the number of looks, and a sharp 

decrease in look duration once a stable WM peak emerges over learning. These non-

linear changes are a behavioral signature of memory formation. Second, the looking 

dynamics for the young and old infant models are quite similar – faster processing 

simulations in both groups show more looking time, fewer looks, and longer look 

durations early in learning. Additionally, the looking dynamics of fast processing 
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simulations of the young infant model resemble the looking dynamics of slow processing 

simulations of the old infant model. This is particularly salient for the looking time and 

look duration measures.  

 In summary, the DNF model is able to capture non-linear changes in memory 

formation that, in turn, impact looking. The DNF model, then, does not assume, like other 

models do, that memory formation is a gradual, continuous process. Rather, the DNF 

model has aspects of linear and non-linear changes in memory formation: Hebbian 

learning accumulates gradually through time, while stable WM peaks emerge as a non-

linear neural event that also impacts looking. Moreover, simulation-to-simulation 

variation in looking and memory formation emerged via stochastic fluctuations in the 

fixation and neural systems. Typically, individual differences in looking are described as 

reflecting stable characteristics of the infant. Indeed, there is good evidence that 

individuals exhibit similar patterns of looking across ages (e.g., Colombo, Mitchell, 

O’Brien, & Horowitz, 1987). However, simulations of the DNF model show that a single 

parameter setting can produce patterns of looking and learning within a range. This raises 

the question of whether stochastic fluctuations in looking also influence how looking and 

learning unfold over time for an individual infant.  

Is the Spatial Precision Hypothesis Required to Capture  

Developmental Change? 

 In this chapter, I generalized the SPH from the domain of spatial cognitive 

development to infant habituation. Remarkably, the very same implementation of the 

hypothesis (i.e., manipulating the same parameters) that captured changes in children’s 

performance in a spatial memory task (Schutte & Spencer, 2009) also captured a shift in 
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habituation and discrimination during infancy. It is unclear, however, whether the SPH 

must be implemented in precisely the manner used here. To probe this, I examined 

whether the four parameters manipulated to implement the SPH must be changed 

together to capture developmental change in both habituation and discrimination. I did 

this in two steps. First, I performed a linear interpolation between the young and old 

infant models for each parameter of the SPH (cuu, cww, cuv, cwv). In particular, I divided the 

difference between the young and old infant model parameters into four proportional 

steps (+.25, +.5, +.75, +1), where 0 equals the parameter value for the young infant 

model and 1 equals the parameter value for the old infant model. Then, I conducted eight 

sets of simulations. In the first four, I manipulated each SPH parameter independently to 

probe its influence. In simulation sets 5 and 6, I manipulated SPH parameters together 

based on their type of connection, excitatory or inhibitory. In simulation sets 7 and 8, I 

manipulated SPH parameters based on the sub-system they govern, that is, PF or WM. 

Finally, I explored a final type of developmental change that should directly influence 

speed of processing—changing the build timescale of the Hebbian layers.  

 Independent parameter changes. Figure 13 (A-D) shows the looking time results 

during habituation and test for four sets of simulations in which I manipulated each SPH 

parameter independently of the other three. For reference, I also included looking time 

for the young infant model (black open circles) and old infant model (gray closed 

circles). Increasing self-excitation in PF alone (cuu, A) had little or no impact on 

habituation or discrimination, although the model did respond somewhat more robustly to 

the far test as strength increased. Increasing self-excitation in WM alone (cww, B), by 

contrast, had a strong effect on habituation and discrimination. When increased by +.25 
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(blue squares), the model habituated more quickly than the old infant model, but showed 

no dishhabituation to the close test. The model did dishabituate to the far test. When 

increased by +.5 (red pluses), +.75 (green triangles), and +1 (cyan stars), the model 

habituated on the first trial and did not dishabituate to the close or far test. This occurs 

because WM is so robust that it suppresses encoding of both items. Thus, changes in WM 

alone led to faster speed of processing, but not enhanced discrimination.  

Increasing the strength of the inhibitory connection from Inhib to PF alone (cuv, C) 

had little or no impact on habituation or discrimination. However, increasing the strength 

of the inhibitory connection from Inhib to WM alone (cuv, D) had a dramatic effect on 

habituation and dishabituation. As the strength of this connection increased, the model 

began to exhibit an increase in looking across trials and high levels of looking to the close 

and far tests. This occurred because inhibition effectively suppressed the model’s ability 

to form a WM for the stimulus.  

These simulation results show that changes in a single SPH parameter 

independent of the others does not capture developmental change in both habituation and 

discrimination. Thus, in the next section, I probe whether correlated parameter changes 

grouped by connection type – excitatory and inhibitory – might be an effective way to 

reproduce developmental change.  

 Connection-type parameter changes. System level changes in excitatory or 

inhibitory connections may be sufficient to capture developmental change in both 

habituation and discrimination. For example, increasing the strength of the connection 

from Inhib to PF (cuv) and from Inhib to WM (cuw) together might give rise to strong 

suppression of encoding and, thus, faster habituation. Similarly, stronger suppression of 
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activity around remembered items in WM might slow updating for similar items and 

produce finer-grained novelty discrimination. Reversely, stronger self-excitation in PF 

(cuu) and WM (cww) might give rise to faster WM formation and faster habituation. 

Stronger self-excitation in WM might also create more localized WM peaks and impact 

discrimination.  

Figure 13E shows simulation results from increasing the strength of self-

excitation in PF (cuu) and WM together (cww). As the strength of self-excitation increased 

slightly (i.e., +.25), the model habituated quickly, but only dishabituated to the far test 

(see blue squares). As the excitatory strength increased, the model habituated on the first 

trial. It also showed no evidence of dishabituation to the close or far test because WM is 

so robust that it suppresses encoding of both items. Figure 13F shows simulation results 

from increasing the strength of inhibition from Inhib to PF (cuv) and Inhib to WM (cwv). 

As the strength increased, the model showed no evidence of habituation or 

dishabituation: with inhibition so strong, the model was unable to form WM peaks.  

These results show that changes in the strength of SPH parameters based on the 

connection type does not capture developmental change in habituation and 

discrimination. This highlights an important property of the SPH that has emerged in the 

different studies probing this hypothesis: effective developmental change requires 

balanced changes in excitation and inhibition. This suggests a final type of parameter 

change to probe: localized parametric changes in PF versus WM, that is, to manipulate 

parameters that govern encoding independently from parameters that govern working 

memory.  
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 Subsystem parameter changes. Changes in the strength of SPH parameters that 

influence encoding and the parameters that influence working memory might better 

capture developmental change than the manipulations above. Increasing the strength of 

self-excitation in PF (cuu) and inhibition from Inhib to PF (cuv) might lead to faster 

encoding and, thus, faster working memory formation. In addition, strong self-excitation 

in PF might enable the DNF model to robustly respond to the close test. By contrast, 

increasing the strength of self-excitation in WM (cww) and inhibition from Inhib to WM 

(cwv) might lead to faster working memory formation and faster habituation. Strong 

reciprocal interactions between WM and Inhib might also give rise to sharper localized 

peaks like those that enable the old infant model to discriminate between the habituation 

and close test stimulus.  

Figure 13G shows simulation results from increasing the strength of self-

excitation in PF (cuu) and inhibition from Inhib to PF (cuv). These parameter changes had 

little effect on habituation or dishabituation. By contrast, Figure 13H shows the influence 

of WM manipulations. Increasing the strength of self-excitation in WM (cww) and 

inhibition from Inhib to WM (cwv) produced a developmental profile that mirrors the 

developmental profile captured by the full SPH.  

These results suggest that the SPH, as implemented, is not required to capture 

developmental change in both habituation and discrimination. To capture these changes, 

only the strength of reciprocal interactions between WM and Inhib must change. 

Importantly, it is unclear whether changes in these interactions are sufficient to account 

for empirical results in other domains or contexts. For example, changes in self-excitation 

in PF are critical for capturing developmental change in spatial recall (Schutte & Spencer, 
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2009). Changes in self-excitation in PF are also critical for capturing developmental 

change in infants’ familiarity preferences between 6 and 8 weeks of age - a period in 

which familiarity preferences become increasingly more robust (Perone & Spencer, 2010; 

Wetherford & Cohen, 1972). I return to this issue in Chapter 5. 

 Hebbian Learning Rate. A remaining question is whether non-SPH parameter 

changes can capture developmental change in both habituation and discrimination equally 

well. I have shown that these developmental changes emerge from changes in neural 

dynamics. Perhaps a more intuitive approach, however, is to manipulate the speed at 

which the system forms memories. Decreasing the time scale ("build) at which Hebbian 

traces accumulate, that is, faster accumulation might impact habituation and 

discrimination in the same way as the SPH. Specifically, fast accumulation of activity in 

HLWM can lead to fast WM formation and habituation of looking. Fast accumulation of 

activity in HLPF can lead to strong initial responses to novelty, including to the close test. 

To examine this possibility, I decreased "build from 10000 by 25% (7500), 50% (5000), 

75% (2500), and 100% (1). The simulation results are shown in Figure 14. As "build 

decreased, the model habituated more quickly but it did not exhibit any increased ability 

to discriminate between the habituation and close stimulus.  

Conclusions of Chapter 3 

 In this chapter, I developed a new theory of infant looking and memory that 

overcomes three limitations of existing models. First, the theory captures developmental 

change in processing speed and discrimination within the same architecture. No previous 

model has captured developmental change in both processing speed and discrimination 

within the same architecture, which in needed to probe whether these changes can arise 
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from the same mechanism. The DNF model posits that these changes do arise from the 

same mechanism, which I will probe experimentally in Chapter 5.  

Second, the DNF model captures non-linear changes in memory formation that, in 

turn, impact looking in a non-linear way. Memory formation in habituation tasks has long 

been assumed to be gradual process. Although gradual changes in memory almost 

certainly occur in habituation studies, infants’ looking can change qualitatively from one 

trial to the next, which suggests memory also undergoes a non-linear transition over the 

course of learning (Roder et al., 2000). Importantly, the DNF model has elements of 

both–the accumulation of Hebbian learning in the DNF model is gradual, yet the 

formation of a stable WM peak is a non-linear neural event that dramatically affects 

looking.  

The final innovation is that the DNF model captures looking as an active 

behavior, linking looking to cognition to create a dynamic exploratory system. As I 

suggested in Chapter 1, a theory that establishes a link between looking and cognitive 

dynamics can enrich our empirical understanding of infant behavior. In Chapter 4, I 

demonstrate this in four ways. First, I examine whether the DNF model can be 

generalized to a more common task context for studying looking dynamics and 

recognition performance – the Visual Paired Comparison (VPC) procedure. Second, I 

examine whether infants, like the DNF model, discriminate along a single, continuous 

metrically organized dimension. Third, I examine whether individual differences in 

looking are linked to differences in discrimination in the model and infants. Finally, I test 

a novel prediction of the DNF model: under task contexts requiring fine-grained 
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discrimination, human infants will show a familiarity bias that arises from robust 

memory. 
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Figure 4. Fixation Dynamics. Architecture and 

behavior of the fixation system. The system 

looks and looks away from a single location at 

which a stimulus is present (A). When a 

stimulus is present at a center location, it 

presents noisy input to the fixation system (B). 

The combination of a self-excitatory 

connection within the fixation system and 

presence of noisy input (C) can bias the 

fixation system to enter and sustain 

suprathreshold activation. These inputs, 

together with the resting level dynamics (see 

text), create a stochastic oscillation between 

the looking and looking away state (D) and 

variable look durations across time (E).  
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Figure 5. Autonomous Looking and Learning. Illustrates the processes by which a 

dynamic exploratory system learns autonomously by looking. Panel A shows a single 

stimulus in the task space. Panel B shows the duration of looking and looking away 

from the stimulus across 200 s of exploration. Panel C shows the fixation dynamics 

that are directly translated into looking and looking away. Early in learning, the model 

exhibits few looks of long duration. Late in learning, the model exhibits many looks of 

short duration. This pattern of looking arises from the model encoding the stimulus 

early (D-E), which supports looking, and the emergence of a stable working memory 

peak late (F-H), which suppresses encoding and releases fixation.  

 



www.manaraa.com

 64 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 65 

 

 

 

 

 

 

 

 

Young Old Young Old Young Old

hu -10.00 - hw -3.50 - hv -10.00 - cff 1.20 !excite 80 chl 0.70

cuu 0.6930 0.7910 cww 0.7712 1.2323 cuv 0.2385 0.2646 cfu 0.15 !inhib 10 !uhl 3.00

!uu 3.00 - !ww 3.00 - !uv 15.00 - cuf 1.00 !build 10000 cwhl 0.32

cwu 0.15 - cvu 0.80 - hrest 5.00 !decay 50000 !whl 3.00

!wu 5.00 - !vu 5.00 - hdown 2.50

cwv 0.0225 0.1360

!wv 15.00 -

cvw 3.20 -

!vw 5.00 -

All Ages All Ages All Ages

Hebbian 

Learning 

(hl)

PF(u) WM(w) Inhib(v) Fixation(f)
Time Scales 

(!)

Table 1. Model Parameters For Single Presentation Task 
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Figure 6. Perceptual and Memory Dynamics In Old Infant Model. Shows the state 

of PF and WM in the old infant model across the habituation phase. Early in 

learning, the model encodes begins to form a memory for the stimulus as it looks 

and looks away (A-D). Late in learning, the model establishes a stable working 

memory for the stimulus, which suppresses encoding and leads to looking away 

(E-F). Panel G shows the activation profile of the old infant model at the onset of 

each habituation trial. The activation profile is the average state of PF and WM 

across simulations.  
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Figure 7. Looking Behavior, Generalization, and Discrimination In Old Infant Model. 

Shows looking behavior of the old infant model during the habituation and test phases 

averaged across simulations (A-C). The old infant model shows a relatively rapid 

decline in looking across trials (A), an incline in number of looks across trials (B), and 

increasingly short look duration across trials (C). The old infant model exhibits an 

increase in looking time to both the close and far tests. Panels D-E illustrate the 

mechanisms of dishabituation to the close (D) and far (E) tests. When the model looks 

at the far test, the stimulus excites uninhibited neurons in PF. Activation is strong and 

able to sustain above threshold levels, supporting looking, and giving rise to 

dishabituation. When the model looks at the close test, the stimulus excites inhibited 

neurons. However, strong excitation in PF (see top panel in D) and strong lateral 

inhibition in WM (see bottom panel in D) slows updating and helps support fixation.  
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Figure 8. Perceptual and Memory Dynamics In Young Infant Model. Shows the 

state of PF and WM in the young infant model across the habituation phase. As in 

the old infant model, early in learning the model encodes and begins to form a 

memory for the stimulus (A-D). Late in learning, the model establishes a stable 

working memory for the stimulus, which suppresses encoding and leads to looking 

away (E-F). Panel G shows the activation profile of the young infant model at the 

onset of each habituation trial. For comparison, panel H shows the activation profile 

of the old infant model.  
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Figure 9. Distribution of Working Memory Formation 

Across Development. Shows the distribution of trials on 

which the young infant (black bars) and old infant (gray 

bars) model first formed a stable WM peak across 

simulations. The young infant model most frequently 

formed a WM peak on trials 5-8, whereas the old infant 

model tended to form a stable working memory on trials 

2-5. Developmental change in processing speed within 

the DNF model arises from changes in the rate at which 

a stable WM peak arises. These differences in the rate at 

which the young infant and old infant models form a 

stable working memory are attributable to the SPH. 
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Figure 10. Looking Behavior, Generalization, and Discrimination In Young Infant 

Model. Shows looking behavior of the young (black lines) and old (gray lines) infant 

models during the habituation and test phases averaged across simulations (A-C). 

The young infant model is slower to exhibit a decline in looking (A), exhibits few 

looks (B), and exhibits longer look durations (C) across trials than the old infant 

model. The young infant model exhibits an increase in looking time to the far test, 

but not the close test, relative to the last habituation trial. The old infant model 

exhibits an increase in looking time to both the close and far tests. Panels F-G 

illustrate the mechanisms of generalization of looking (F) and dishabituation (G) in 

the young infant model. When the model looks at the close test, the stimulus excites 

strongly inhibited neurons in PF from the active maintenance of the stimulus in 

WM. Activation in PF is weak and provides little support for the fixation system. 

The model generalizes habituation levels of looking. When the model looks at the 

far test, the stimulus excites uninhibited neurons in PF. Activation is strong and able 

to sustain above threshold levels, supporting looking, and giving rise to 

dishabituation. For comparison, Panels D-E show the dynamics of PF and WM for 

the old infant model at test, for comparison. 
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Figure 11. Simulation-to-Simulation Variation In Looking Dynamics. A sample of 

the looking time, number of looks, and look duration during the habituation and test 

phase from five simulations of the young infant model (A-C) and old infant model 

(D-F). The looking behavior of the model fluctuates across trials and simulations. 

Across simulations, both models exhibit a decline in looking time across trials, an 

increase in the number of looks, and a decrease in look duration. Across the sample 

simulations, the old infant model exhibits a more rapid decline in looking time than 

the young infant model, which is associated with a steeper incline in the number of 

looks and decline in look duration across trials. 
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Figure 12. Non-Linear Link Between Looking and Memory Dynamics. For the 

young infant model, looking time (A), number of looks (B), and look duration (C) is 

anchored to the trial on which a stable working memory was formed. Shows looking 

for simulations that formed a working memory early on trial 5 (green line) and late 8 

(gray line). The same looking measures are shown for the old infant model for 

simulations that formed a working memory early on trial 2 (green line) and late trial 

5 (gray line). For both models, more looking, fewer looks, and longer look durations 

early were associated with faster working memory formation. Once formed, working 

memory gave rise to sudden changes in looking including a dramatic decline in 

looking, increase in the number of looks, and decrease in look duration. 
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Figure 13. Testing the Spatial Precision Hypothesis. Results from simulations testing 

whether the spatial precision hypothesis parameters are required to capture 

developmental change in both looking and discrimination. Each simulation set 

manipulated one or more SPH parameters on a linear scale from the young infant 

setting for a given parameter to the old infant setting for that parameter in proportional 

steps of : +.25 (blue line), +.5 (red line), +.75 (green line), +1 (cyan line). The results 

for the young (gray line) and old (gray line) infant model parameter settings are shown 

for comparison. Panel A-D show single parameter changes. (A) increases in self-

excitation within PF; (B) increases in self-excitation within working memory; (C) 

increases in inhibition from Inhib to PF; (D) increases in inhibition from Inhib to WM. 

Panesl E-F show parameter changes based on connection type. (E) increases in self-

excitation within PF and WM; (F) increases in inhibition from Inhib to PF and to WM. 

Panels G-H show parameter changes based on “sub-system”, perceptual or memory. 

(G) increases in self-excitation in PF and inhibition from Inhib to PF; (H) increases in 

self-excitation in WM and inhibition from Inhib to WM. 
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Figure 14. Testing Hebbian Learning Rate. Results from 

simulations testing whether the rate at which Hebbian 

learning occurs within PF and WM was sufficient to 

capture developmental change in both looking and 

discrimination. On the left is looking time during 

habituation. On the right side is looking to the close and 

far tests. The time scale by which HL accumulates was 

sped by 25% (blue line), 50% (red line), 75% (green 

line), and 100% or a value of 1 (cyan line). The looking 

of the young (gray line) and old (black line) models are 

shown for comparison. 
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CHAPTER 4 

METRICALLY ORGANIZED STIMULUS  

REPRESENTATIONS IN INFANTS 

In Chapter 3, I showed that the DNF model can capture developmental change in 

looking and discrimination within a single architecture in a single presentation 

habituation task. I also showed that change in these behaviors can arise from the same 

mechanism. One goal of this chapter is to test whether the DNF model can capture 

infants’ performance in the Visual Paired Comparison (VPC) task, the task commonly 

used to probe changes in speed of processing over development. The VPC and single 

presentation tasks differ in at least two ways. The first and most obvious difference is that 

in the VPC, infants learn about one item across looks to identical items paired together, 

whereas in the single presentation task, infants learn about one item at a central location. 

In the VPC, then, infants look at a stimulus, disengage fixation, and switch gaze to look 

at the same stimulus at another location. This can lead to shorter average look durations 

than in single presentation tasks, which might impact memory formation (Oakes & Ribar, 

2005).  

Another difference between the two procedures is what constitutes evidence of 

recognition and discrimination at test. In a single presentation task, recognition and 

discrimination are inferred from two measures across separate trials. Recognition is 

inferred from a decline in looking to the familiar stimulus during the habituation phase, 

and discrimination is inferred when looking is renewed to elevated levels to a novel 

stimulus. In the VPC, recognition and discrimination are inferred from one measure on a 

single trial – the novelty score, a relative percentage of time spent looking to a novel 
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stimulus relative to a familiar one. A reliable novelty score above chance (.5) is assumed 

to reflect recognition of the familiar stimulus and discriminative encoding of the novel 

stimulus.  

The VPC yields a richer set of looking dynamics than single presentation tasks. 

For example, shift rate – the rate of switching gaze relative to time spent looking – can 

only be measured in the VPC. Previous studies have shown that individual differences in 

such measures are related to differences in memory formation (Kovack-Lesh, Horst, & 

Oakes, 2008; Rose et al., 2001). In addition, familiarity biases are more likely to be 

observed in the VPC than single presentation tasks (for an exception, see Whetherford & 

Cohen, 1973). For this reason, the VPC is typically used to probe how the strength of 

memory changes with increasing exposure to a stimulus (Fantz, 1964).  

A second goal of this chapter is to probe the DNF model for novel predictions 

about infants’ metric representations on the featural dimensions of color and shape. A 

fundamental assumption of DNFs is that neuronal interactions take place over 

continuous, metrically organized dimensions. This feature has enabled DNFs to capture 

various empirical findings from literatures as diverse as infant cognition (Schöner & 

Thelen, 2006), spatial cognition (Schutte & Spencer, 2009), and visual cognition 

(Johnson et al., 2009). For example, using the same DNF model presented in Chapter 3, 

Johnson et al. (2009) showed that the metric similarity between remembered and novel 

items influences discrimination performance. In particular, the model was presented with 

two similar colors and one color that was dissimilar to the other two. The memories for 

the two similar colors interacted in working memory via local excitatory / lateral 

inhibitory interactions, effectively sharpening the WM peaks. This produced weak and 
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narrow inhibition in PF. The single dissimilar peak, by contrast, was associated with a 

broader peak, producing strong and broad inhibition in PF. The sharper peaks enabled the 

model to detect novelty for very similar items. Note that the use of continuous, metric 

dimensions also enabled Schöner and Thelen (2006) to capture a variety of experimental 

results from Baillergeon’s (1987) drawbridge experiments, in which infants look at 

screens that rotate to various degrees.  

Previous studies have shown that infants can discriminate between familiar and 

novel stimuli that differ on a single magnitude dimension (Brannon et al., 2006). Previous 

studies have also shown that infants can discriminate between familiar and novel stimuli 

that differ on multiple feature dimensions (e.g., a green cross from a green circle) (Cohen 

et al., 1971; see also Cornell & Strauss, 1973; Saayman, Ames, & Moffett, 1964; Welch, 

1974). Importantly, infants exhibit different patterns of discrimination on different 

dimensions. On magnitude dimensions, infants exhibit a graded pattern of discrimination, 

that is, infants respond less to similar familiar and novel items and more to dissimilar 

familiar and novel items (e.g. Brannon et al., 2006). By contrast, infants exhibit 

categorical discrimination for hue (Bornstein, Kessen, & Weiskopf, 1976) and auditory 

dimensions such as voice onset time (Werker & Lalonde, 1988). Thus, not all dimension 

are equally discriminated, which presumably depends in complex ways on infants 

experience with various dimensions over time. It remains unknown, how infants 

discriminate among color and shape dimensions when these features are embedded 

within multi-dimensional objects. Here, I tested discrimination under two conditions – 

one condition in which familiar and novel items are metrically similar, and one condition 

in which familiar and novel items are metrically dissimilar.  
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 Below, I situated the DNF model in the VPC task and show that it produces 

looking behaviors typically measured in the task including indices of processing speed 

such as shift rate, average look duration, and peak look, as well as the novelty score. 

After that, I probe a novel prediction in the DNF model. In particular, I show that robust 

memory and the metric similarity between familiar and novel items both influence 

whether the model exhibits a familiarity or novelty preference. I then test the prediction 

with infants that familiarity biases can emerge late in learning from robust memory, even 

in situations where infants have just shown a novelty preference. That is, the model 

predicts a novelty-to-familiarity shift. This pattern would violate all current models of 

infant habituation and visual recognition.  

The theoretical and empirical research presented below will allow me to examine 

how looking and discrimination change over development in Chapter 5. In particular, this 

work establishes the theory-experiment link required to use the DNF as a tool for 

understanding how looking and cognitive dynamics are linked over development. 

Moreover, examining how discrimination along a continuous feature dimension changes 

over development requires first establishing that infants are capable of discriminating 

along such dimensions from a stimulus set with well-controlled metric properties.   

A Generalized Dynamic Neural Field Architecture 

Figure 15 shows the DNF model situated in the VPC. To generalize the model to 

capture performance in the VPC, I made two modifications to the 3-layer+ model. First, I 

expanded the fixation system to look among left and right locations at which task relevant 

stimuli appear, a center location where an attention-getting stimulus appears, and away 

locations at which no task relevant stimuli appear. Second, I added a second dimension 



www.manaraa.com

 86 

along which the model encodes and remembers stimuli by duplicating the neural 

architecture. When the model looks at a blue circle, for instance, it encodes the color in 

one network and shape in another. This is important because the open empirical question 

addressed here is whether infants can discriminate a change along a single, continuous 

metrically organized dimension embedded within a multi-dimensional object. The 

updated equations are below. 

 The equations for the left and right nodes are identical. The equation for the left 

node is: 

 

 

 

 

 

This equation is identical to equation 10 for the center node with two exceptions. First, 

the left node receives excitatory input from a color dimension, PF(uc), and a shape 

dimension, PF(us). As in the simulations of the single presentation task, the excitatory 

input from PF(uc) is the sum of above-threshold activation across all sites, x, at time, t, 

, which is gated by the thresholded activation in the left 

node, . Similarly, the excitatory input from PF(us) is the sum of above-threshold 

activation across all sites, x, at time, t, , which is also gated 

by the thresholded activation in the left node, . When the model fixates a blue 

circle, the blue color and circle shape are encoded in parallel and the activation associated 

with encoding each feature dimension is input into the fixation system simultaneously.  

! 

" excite
˙ f l(t) = # fl + h fl + c ff$ fl ( fl) + cb + cs

! 

"cci# fc ( fc) " cci# fr ( fr) " cci# fa ( fa)

! 

+" fl ( fl) c fu# "uc (uc(x',t))dx'

! 

+" fl ( fl) c fu# "us(us(x',t))dx'
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The second exception is that the left node receives inhibitory input from the current 

activity of the other nodes, for example, , which is the thresholded activation 

of the right node weighted by . When the right node pierces threshold, it has an 

inhibitory effect on the state of the left node. If activation in the left node is relatively 

weak, this can induce competition between the left and right nodes for fixation. This 

contributes to gaze switching. 

 As in single presentation tasks, infants are typically presented with an attention-

getter at a center location prior to stimulus presentation at left and right locations. In the 

DNF model, the fixation system looks to away locations at which no task relevant stimuli 

appear at the onset of the experimental session and during each inter-stimulus interval. At 

the onset of each trial a strong, transient input is presented to the center node that quickly 

moves it from the “off” state to the “on” state, which, in turn, inhibits the away node and 

turns it from the “on” state to the “off” state. The presence of stimuli at the left and right 

locations then biases those nodes to compete for fixation.  

The equation for the center node is:  

 

 

 

 

This equation is identical to equation 10 except that it only is presented with an attention-

getting input, . The center node receives no excitatory input from PF because 

attention-getters are removed from the display once fixated, minimizing the likelihood 

that the items are encoded. 

 The equation for the away node is:  

 

 

! 

cag

! 

" excite
˙ f c(t) = # fc + h fc + c ff$ fc ( fc) + cag

! 

" cci# fl ( fl) " cci# fr ( fr) " cci# fa ( fa)

! 

" excite
˙ f a(t) = # fa + h fa + c ff$ fa ( fa) + csa # cci$ fl ( fl)



www.manaraa.com

 88 

 

 

This equation is identical to the center node except that it only has a static input, , that 

specifies the presence of task irrelevant stimuli during the entire experimental session.  

 The equation for PF (uc) is: 

 

 

 

 

 

 

This equation is identical to equation 1; however, there are multiple stimuli possible and 

each stimulus specifies values along the color and shape dimensions. As before, a given 

stimulus value is only input into PF when the location associated with the stimulus is 

fixated. This gating is achieved by weighting the stimulus by the thresholded activation 

of the fixation system, for example, weighting S1 by the thresholded activation of the left 

fixation node, . This sets S1 to 0 when the fixation system is not looking 

left, that is, when left node is below 0. The equation for PF(uc) is identical to PF(us). 

 The equation for WM (wc) is:  

 

 

 

 

 

 
 

! 

c
sa

! 

" excite
˙ u c(x, t) = #uc(x,t) + hu + S1c (x, t)$( fl) + S2c (x, t)$( fr)

! 

+ c
uu
(x " # x )$

uc
(uc(x ',t))d # x %

! 

" c
uv
(x " # x )$

uv
(vc(x',t))d # x %

! 

+ c
uhl
(x, " x )hl

uc
(x,t)d " x #

! 

+cuf"( fl) + cuf"( fr)

! 

+noise

! 

" excite
˙ w c(x, t) = #wc(x,t) + hw + cS1c (x,t)$( fl) + cS2c (x, t)$( fr)

! 

+ c
wu
(x " # x )$

wu
(uc(x',t)d # x %

! 

+ c
ww
(x " # x )$

ww
(wc(x',t)d # x %

! 

" c
wv
(x " # x )$

wv
(vc(x ',t)d # x %

! 

+ c
whl
(x, " x )hl

wc
(x, t)d " x #

! 

+noise

! 

" cci# fr ( fr) " cci# fc ( fc)



www.manaraa.com

 89 

This equation is identical to equation 6 except that two stimulus values appearing at left 

and right locations can be input into WM,  and , as above. The equation 

for WM(uc) is identical to WM(us). 

 Figure 16 illustrates how the model captures performance in the VPC. The model 

was familiarized with pairs of identical items across 6 10 s trials. On a subsequent 20 s 

test trial, I tested the model’s ability to discriminate between the familiar item and a 

metrically dissimilar item on one dimension by pairing the familiar item with a novel 

one. The left portion of the figure shows a sample of looking and associated states of PF 

and WM during the familiarization phase. The right portion of the figure shows a sample 

of looking and associated states of PF and WM during the test phase.  

In Figure 16A, the left node (red line) is above threshold, suppressing activity of 

the right (blue line) and away (nodes). The stimulus at the left location (red star) is input 

into PF (B). Active neurons in PF excite similarly tuned neurons in WM. After 

approximately 1 s of looking, activation of the left node begins decrease in strength and 

approach threshold. This reduces the suppression of activity of the right and away nodes, 

which begin to rise toward threshold and compete for fixation. The away node wins, in 

this example. While looking away, activity in PF and WM subsides (C). The model 

happens to look right next, and an identical stimulus at the right location (red star) is 

input into PF.  

Figure 16E shows the fixation system at test. Initially, the model is looking left at 

the familiar stimulus. Activation in PF is relatively weak due to the presence of strong 

activity in WM (F). This provides little support for fixation, which leads the model to 

exhibit a short look and switch gaze. The model looks right next, the location at which 

! 

S1
c
(x,t)

! 

S1
s
(x,t)
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the novel stimulus is present. The novel stimulus is input into PF, which excites neurons 

uninhibited by the presence of strong activity in WM (see bottom panel G). The robust 

response of PF provides support for fixation, and the model shows a visual preference to 

look at the novel stimulus. 

The expanded fixation system of the generalized DNF model enables it to produce 

the rich set of looking dynamics evident in the VPC. Figure 17A shows the novelty score, 

which I calculated across 200 simulations by dividing looking time to the novel item by 

total looking to the familiar and novel items. On average, the model exhibited a robust 

novelty preference. The model can also capture three well-known looking indices of 

processing speed - shift rate, look duration, and peak look. Figure 17B shows shift rate, 

which is the rate of switching gaze between left and right locations relative to the amount 

of time spent looking during the familiarization phase. In the model, gaze switching is 

influenced by noise (see Figure 16A) and strong memory (see Figure 16E), which reduce 

support for fixation (see Figure 16E). Figure 17C shows look duration, which is the 

average length of each look during the familiarization phase. Typically, shift rate and 

look duration are correlated. In the model, for example, shift rate increases as look 

duration decreases, r = -.76. Like gaze switching, look length is influenced by noise and 

memory formation. Finally, Figure 17D shows peak look, the longest look exhibited 

during the familiarization phase. Longer peak looks are likely to occur when memory is 

weak and encoding strong, but noise can also influence the duration of a look.  

In summary, the DNF model can qualitatively capture performance in single 

presentation and VPC tasks. The model can produce a rich set of looking measures, 

including well-known looking indices of processing speed. Novelty scores in the model 
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arise from relative differences in PF activity for familiar and novel items, which is 

influenced by the strength of WM for the familiar item. The fact that the DNF model 

generates both looking measures common in the literature and novelty preference scores 

suggests that this model could have a close tie to empirical work and be constrained by 

multiple measures of performance. Toward this end, I probe the model’s ability to 

generate a novel empirical prediction in the next section. This would establish the utility 

of the model and its ability to connect looking and cognitive dynamics in human infants.  

Memory-Induced Familiarity and Novelty Biases 

It is widely accepted that familiarity and novelty bias are behavioral indices of 

cognitive processing underlying visual foraging, a ubiquitous exploratory behavior by 

which living organisms and artificial systems construct knowledge about foreign 

environments. Foraging has been studied extensively in living systems such as rabbits 

(Smith & Litvaitis, 2000), birds (Blough, 1984), squirrels (Duncan & Jenkins, 1998), and 

human infants (Robertson et al., 2004) and adults (Dodd, Van der Stigchel, & 

Hollingworth, 2009), as well as artificial robotic (Mobus & Fisher, 1999), neural (Perone 

& Spencer, 2010), and behavioral (Robertson et al., 2004) systems. Visual foraging is 

believed to reflect a process by which representations of items in the environment are 

formed. These representations, in turn, support recognition and novelty seeking.  

Less clear, however, are the origins of familiarity seeking behaviors. Whether 

adults exhibit a familiarity or novelty bias depends on the task context (Dodd et al., 

2009). When casually viewing a visual scene, for instance, adults frequently re-fixate 

familiar, remembered items. When searching for a particular item in a visual scene, 

however, adults more frequently fixate novel items. Whether adults exhibit a familiarity 
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or novelty bias also depends on the stimulus context. For example, Park, Shimojo, and 

Shimojo (2010) presented participants with pairs of different items across a series of 

trials and asked them to indicate what item was preferable and the strength of their 

preference. One item remained the same across trials (familiar), and one item was 

changed on each trial (novel). For faces, adults exhibited an increasing familiarity 

preference across trials. For natural scenes, by contrast, adults promptly exhibited a 

novelty preference that remained saturated across trials. These findings show that, in 

adults, robust memory can lead to a familiarity bias. 

Understanding the conditions under which familiarity and novelty biases arise is a 

particularly salient issue in the infant cognition literature. A robust empirical finding 

from this literature is the familiarity-to-novelty shift in which infants exhibit a bias to 

look at a familiar item relative to a novel one after brief exposure (or early in learning) 

and a bias to look at a novel item relative to a familiar one after prolonged exposure (or 

late in learning; Fantz, 1964; Roder et al., 2000; Rose et al., 1982). This shift has been the 

centerpiece of theories of infant habituation (Hunter & Ames, 1988), which posit that 

familiarity biases arise early in learning as infants initially encode and begin to form a 

memory for a stimulus, and novelty biases arise late in learning as a robust memory is 

formed that supports recognition of the familiar item. Like adults, however, whether 

infants exhibit a familiarity or novelty bias appears to depend on the task context. For 

example, Shinskey and Munakata (2005) presented infants with one object across a series 

of familiarization trials and allowed them to reach for it. Following familiarization, 

infants saw either the familiar object or a novel object hidden in the dark or visible in the 

light. Infants searched for the familiar item when hidden in the dark and searched for the 
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novel item when visible in the light. These findings indicate that robust memory can 

induce a familiarity bias under demanding task conditions in which infants reach for 

objects. Here, I test whether robust memory induces a familiarity bias in a demanding 

discriminatory context. 

Over the past several decades, neural network models have made a substantive 

contribution to our understanding of fundamental visual cognitive processes. 

Nevertheless, the origins of familiarity biases have largely eluded them. Only two models 

have provided possible mechanisms for familiarity biases (Schöner & Thelen, 2006; 

Sirois & Mareschal, 2004), and both posit that familiarity biases arise from weak memory 

and novelty biases arise from robust memory.  

Simulations of the DNF model in a single presentation habituation task have 

shown that this model can capture familiarity biases early in learning due to initially 

weak memory for a stimulus (Perone & Spencer, 2010). Critically, however, familiarity 

biases can also arise from robust memory when the model is asked to make a fine-

grained discrimination late in learning, that is, when the familiar and novel item are quite 

similar. Figure 18A-D illustrates this prediction. When the model looks at pairs of 

identical items across a familiarization phase (A), it encodes and forms a working 

memory for the item (see blue item). Across looks, the strength of the Hebbian 

contribution (see purple line, right y-axis) also increases, which boosts the neuronal 

response to the familiar item upon subsequent fixations.  

Figure 18B-C shows how novelty biases arise when the familiar and novel item 

are dissimilar. In this example, the familiar and novel item are three equidistant metric 

steps (see pink circle in Figure 18B). When the model looks at the novel item, the 



www.manaraa.com

 94 

stimulus excites neurons outside of the inhibitory trough in PF produced by strong 

activity in WM. Activation in PF is strong (red line), the stimulus is actively encoded, 

and looking time is high because the WM peak for the new stimulus is weak (see lower 

panel). When the model looks at the familiar item (C), however, a strong WM peak 

quickly emerges and inhibits the perceptual peak. Consequently, looking to the familiar 

stimulus is low. Across a series of looks, longer looking to the novel item and shorter 

looking to the familiar item yields a robust novelty preference.  

Figure 18D shows a very different pattern of behavior that emerges, just seconds 

later, when the model is presented with the familiar item paired with a similar one that is 

novel by one metric step. When the model looks to the similar novel object, the stimulus 

excites neurons that fall within the inhibitory trough in PF. Consequently, activation in 

PF is quite weak (red line) and looking time is low. Critically, activation in PF is 

relatively stronger when the model looks to the familiar object because the baseline level 

in PF at the stimulated site is elevated due to the Hebbian contribution (see purple line in 

PF). This difference in PF biases the model to preferentially look to the familiar item over 

a similar novel one. Thus, the same memory representation that induces a novelty bias 

when familiar and novel items are dissimilar also induces a familiarity bias when familiar 

and novel items are similar. Note that robust memory leads to low levels of activation 

when the model looks to both the familiar and similar novel item, which, in turn, leads to 

low levels of total looking. This suggests that total looking time on this ‘one step’ test 

provides a good index of the strength of working memory. I probe this prediction 

quantitatively in the section that follows. 
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Model Simulations 

Method 

The simulations in Figure 18 show qualitatively how robust memory in the DNF 

model generates both a familiarity and novelty bias when the metric similarity between 

the familiar and novel items vary at test. I examined this prediction in quantitative detail 

by familiarizing the model with pairs of identical objects across 6 10 s trials. Recognition 

of the familiar item was tested across two 20 s test trials. One test was a three step test, in 

which the familiar item was paired with a dissimilar item that was novel by three 

equidistant metric steps on one dimension. The other test was a one step test, in which the 

familiar item was paired with a similar novel item that was novel by one metric step on 

the same dimension (see Figure 20). The order of the one step and three step tests was 

counterbalanced across 400 simulations. Looking time was calculated for each simulation 

for each test trial, and a novelty score was calculated by dividing looking to the novel 

object by total looking for each trial. Model parameters are presented in Table 2. 

Results 

The qualitative simulations in Figure 18 suggest that robust memory can induce a 

familiarity bias when familiar and novel items are similar, as on the one step test. But 

what constitutes a ‘robust’ memory? This is an important question in quantitative analysis 

of the model’s performance given emergent individual differences in performance across 

simulations. This question is also important looking ahead to the goal of this quantitative 

analysis—predicting infants’ performance. 
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In models, measuring robust memory is readily determined by the strength of 

WM on the test trial. In infants, however, one must rely on behavioral signatures of 

memory. Previous studies have shown that looking indices of processing speed such as 

shift rate, look duration, and peak look are associated with recognition performance (e.g., 

Rose et al., 2001; 2002), which suggests that these measures are a good index of robust 

memory formation. The qualitative analysis of the model in Figure 18 suggests that 

looking time on the one step test, that is, total looking across the familiar and novel item 

might be a good predictor as well.  

To determine whether looking measures predict working memory strength as well 

as discrimination performance in the model, I conducted three sets of hierarchical 

regressions on the model’s performance. All regression analyses in this thesis are 

presented in tables with the same structure (see Table 3 for an example). On the left, the 

step and predictor variables entered on each step are presented. The tables include 

summary statistics including R
2
, change in R

2 
across steps, change in the F statistic, and 

the probability value associated with the change in the F statistic. These summary 

statistics indicate the proportion of variance in the dependent measure accounted for and, 

in steps after the first step, whether that proportion was above and beyond the proportion 

accounted for in previous steps. On the right side of the table are the unstandardized beta 

weights (#). The sign of the beta weights indicate the direction of the relationship 

between a particular predictor variable and the dependent measure. The significance 

value of each predictor in the context of the other predictors entered on the step is also 

included, which indicates the relative strength of the predictors.  
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Predicting Working Memory Strength. Qualitative analysis of the DNF model 

suggests that strong WM can induce a familiarity bias on the one step test. Here I 

examined whether looking measures predict working memory strength entering the one 

step test. Results are shown in Table 3. In the first step, I entered the looking indices of 

processing speed (shift rate, look duration, and peak look) as predictors and the strength 

of WM as the dependent measure. Looking indices of processing speed did not account 

for a significant proportion of variance in the strength of WM entering the one step test 

trial. In the second step, I entered looking time on the one step test. Consistent with the 

qualitative analysis of the DNF model, looking on the one step test did account for a 

significant proportion of variance in the strength of working memory, change in R
2 

=.04. 

Finally, on the last step I entered test order. Memory changes not only over the 

familiarization phase but also during test (Roder et al., 2000; Schöner & Thelen, 2006). 

Not surprisingly, then, order accounted for a significant proportion of variance in the 

strength WM going into the one step test trial. Interestingly, the slope of the beta weight 

was negative, indicating that the strength of working memory associated with the familiar 

stimulus actually decayed when the one step test was the second test trial. Similarly, 

Schöner and Thelen (2006) also found that memory for a familiar stimulus decayed 

during the first test trial while the model looked at a very different novel stimulus.  

Looking on the one step test is a good predictor of working memory strength in 

the model, but is it also a good predictor of performance at test? To address this question, 

I again used hierarchical regression. In the first step, I entered shift rate, look duration, 

and peak look as predictors and novelty score on the one step test as the dependent 

measure. Results are shown in Table 4. These looking measures did not account for a 
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significant proportion of variance in the novelty score on this test trial. In the second step, 

I entered total looking on the one step test as a predictor. This measure did account for a 

significant proportion of variance in the novelty score on this test trial, change in R
2
 = 

.081. Note that the beta weight associated with looking on the one step test is positive, 

indicating that lower levels of looking are associated with familiarity biases. This is 

consistent with the qualitative analysis of the DNF model in Figure 18. In the last step, I 

asked whether order also contributed to the novelty score variability. Order made no 

additional contribution to novelty score variability. Order appears to be associated with 

WM strength but not performance on the one step test. This indicates that looking on the 

one step test is a good index of simulation-to-simulation differences in WM strength at 

test regardless of fluctuations in WM strength over test trials. 

What about performance on the three step test? To examine the behavioral 

signatures that predict performance on the three step test in the model, I again used 

hierarchical regression. Results are shown in Table 5. Interestingly, shift rate, look 

duration, and peak look accounted for a significant proportion of variance in the novelty 

score on the three step test, R
2
=.02, but looking on the one step test did not. This 

resembles similar analyses reported by Rose et al. (2001), who found that these measures 

were related to infants’ novelty scores in a VPC task. The three step test is an easier 

discrimination than the one step test, which may better resemble the discrimination 

between familiar and novel items in Rose et al. where the items differed on multiple 

dimensions. 

In summary, regression analyses indicate that low levels of total looking on the 

one step test are associated with strong WM entering the one step test as well as lower 
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novelty scores (i.e., a familiarity bias). By contrast, these regression analyses suggest that 

the best predictor of performance on the three step test—the easier discrimination—are 

looking measures common in the infant literature. Because the central focus here is on 

the novel prediction of the model under conditions where a fine-grained discrimination is 

required, I parsed models into low and high looking groups based on a median split of 

total looking during the one step test. This generated quantitative predictions that I then 

tested with infants. 

One Step Test. The performance of models with low looking on the one step test 

is shown in Figure 19A-C. The low looking group exhibited a familiarity preference on 

the one step test regardless of the order of test presentation (A). This familiarity bias 

arises from stronger activation in PF associated with the familiar item than the similar 

novel item, which provides more support to continue fixating the familiar item. This is 

illustrated in Figure 19B, which shows the average activation in PF while looking at the 

familiar item (black bar) versus the similar novel item (red bar).  

The difference in activation in PF while looking at the familiar and similar novel 

item arises from the activation profile in PF created by its learning history and the state of 

WM at test. This is illustrated in Figure 19C which shows the state of PF while looking at 

the familiar item (black line) and similar novel item (red line) for low looking 

simulations. Activation was stronger while looking at the familiar item than the similar 

novel item. Strong activation while looking at the familiar item arises from increases in 

the Hebbian contribution to PF at sites previously stimulated by the familiar stimulus. 

Weak activation while looking at the similar novel item arises because there is no 
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Hebbian contribution for this item. In addition, it falls within the inhibitory trough 

created by the robust WM peak associated with the familiar item.   

The high looking group performed quite differently. The performance of this 

group on the one step test is shown in Figure 19D-F. This group exhibited a null 

preference on the one step test regardless of its order of presentation (19D). This null 

preference arises from comparable levels of activation in PF associated with the familiar 

item and similar novel item (see Figure 19E), leading to comparable support to continue 

fixating each item. Figure 19F illustrates why this is the case: activation was moderately 

strong while looking at the familiar item (black line) and similar novel item (red line) 

because inhibition surrounding the familiar item was relatively weak. This weak 

inhibition arises from relatively weak activation in WM. In particular, the average 

strength of activation in WM entering the one step test was .94 for high looking 

simulations but 1.44 for low looking simulations. The null preference for the high 

looking group resembles concepts from Hunter and Ames’ (1988) multi-factor model 

which posits that null preferences arise from the relatively equal strength of memory for 

the familiar item and the perceptual pull of the novel item.  

Three Step Test. The regression analyses indicated that looking time on the one 

step test is only predictive of WM strength entering the one step test and novelty scores 

on the one step test. This makes some intuitive sense because the three step 

discrimination is likely to be quite easy for most simulations. Consequently, multiple 

factors might drive subtle differences in the magnitude of the novelty preference. 

Indeed, as can be seen in Figure 19G and 19J, both the low looking and high 

looking groups exhibited a novelty preference on the three step test. For both groups, 



www.manaraa.com

 101 

activation in PF was stronger while looking at the dissimilar novel item than while 

looking at the familiar item (compare red and black bars in 19H and 19K). This 

difference in PF activity arises from the state of PF (see 19I and 19L). Activation was 

stronger while looking at the dissimilar novel item (red line) for both groups because it 

excites neurons uninhibited by WM. This enables PF to respond robustly to the dissimilar 

novel item and support continued fixation.  

In summary, simulation results for the low looking group show that robust 

memory can induce a familiarity bias in one stimulus context—the one step test—and a 

novelty bias in another—the three step test. This is consistent with data showing that 

familiarity biases can arise at test in demanding task contexts (Shinskey & Munakata, 

2005). However, these simulations make a radical prediction—when the one step test is 

presented second, the model predicts a novelty-to-familiarity shift in the low looking 

group. This prediction runs counter to all other models of infant habituation and visual 

recognition which posit that familiarity biases arise early in learning due to weak 

memory. Below, I test these predictions with 10-month-old infants. 

Experiment 1 

In the DNF model, robust memory induces a familiarity bias in a low looking 

group when the familiar and novel item are similar and a novelty bias in both low and 

high looking groups when the familiar and novel item are dissimilar. I tested this 

prediction with 10-month-old infants in the same procedure as the model. I chose 10 

months of age for three reasons. First, by at least this age infants can discriminate along a 

single continuous, metrically organized dimension embedded within multidimensional 

stimuli (Brannon et al., 2006; Brannon et al., 2007). Second, infants of this age are 
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unlikely to exhibit familiarity biases from weak memory because they can quickly form 

working memories for visual stimuli (Ross-Sheehy et al., 2003) and require little 

exposure to a stimulus to recognize it (Rose et al., 2001). Last, I needed to establish an 

upper limit in discrimination performance with a relatively old infant age group to 

examine developmental change in discrimination with younger age groups in Chapter 5. 

Method 

 Participants. Fifty 10-month-old infants participated in this study (M=304.72 

days, SD=14.46 days; 28 boys, 22 girls). Five infants were excluded from the final 

analyses due to fussiness. Infants were predominantly from white middle class families, 

were full-term, and were healthy at time of test. Infants were given a small toy in 

appreciation for their participation. 

Stimuli. Testing the prediction of the DNF model, and, more generally, 

investigating whether infants can discriminate along a single, continuous metrically 

organized feature dimension requires a stimulus set with well-controlled metric 

properties. Thus, I created a new stimulus set in which shape and color dimensions were 

varied continuously with well-controlled metric properties. The stimulus set is shown in 

Figure 20. Shape was defined by an aspect-ratio. Each metric step was defined by a 

proportional change in height and width, generating six equidistant metric steps with the 

total area of each stimulus held constant. Aspect-ratio is a relevant dimension along 

which categories can be discriminated. For example, Spivey (2007) found that adults 

parsed cups and bowls into categories based on aspect-ratio rather than width or height 

alone (see also Oden, 1981). Twelve equidistant colors were sampled from a 360° 
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continuous color space (CIE*Lab, 1976). The conjunction of one shape and one color 

constitute an object. The entire stimulus set consisted of 72 unique items.  

Design and Procedure. Stimuli were presented on a 37” LCD monitor. Pairs of 

stimuli were centered equidistantly on the left and right portions of the monitor. Infants 

were tested in a dimly lit experimental room in which a black curtain hung from the 

ceiling to the floor to divide the room. The curtain had two openings in it. One opening 

revealed a 37” LCD monitor, and, directly below the monitor, one opening revealed a 

low-light TV camera lens used to view infants’ looking behavior.  

Infants were tested in the same experimental design as the DNF model. Infants 

were familiarized with pairs of identical items across 6 10 s trials. The pair of identical 

items that each infant saw was randomly selected. Immediately following the 

familiarization phase, there were 2 20 s test trials (location of familiar and novel items 

were reversed after 10 s). One test trial was the one step test, in which the familiar item 

was paired with a similar item that was novel by one metric step on a single dimension 

(shape or color). The other test trial was the three step test, in which the familiar item was 

paired with a dissimilar item that was novel by three metric steps on the same dimension 

as the one step test. Note that the direction of the one and three step tests was in opposite 

directions on the continuous dimension (see Figure 20). The order of the one and three 

step tests was counterbalanced across infants. The dimension on which infants were 

tested (color or shape) was also counterbalanced across infants. Twenty-four infants were 

tested with the one step test first, and 26 were tested with the one step test second. 

During the experimental session, infants sat on their parents lap 100 cm in front of 

the monitor. Parents wore opaque glasses to prevent parental bias. A trained observer sat 
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behind the curtain and presented stimuli on the monitor. The observer also recorded 

infants’ looking time on a computer while watching them on a black and white TV. At 

the beginning of each trial, a looming white circle on a gray background periodically 

produced a chirping sound. Once the observer determined that the infant was looking at 

this attention-getting stimulus, the observer pressed one computer key to present the 

stimuli, one computer key when the infant was looking left, and one computer key when 

the infant was looking right.  

Results  

 A preliminary question that this study addressed was whether infants discriminate 

along a single, continuous feature dimension embedded within a multi-dimensional 

object. As a group, infants exhibited a novelty preference on the three step test (M=.58, 

SD=.13), t(49)=4.36, p<.001, and a null preference on the one step test, (M=.48, 

SD=.13), t(49)=-1.12, p>.1. These data closely match simulations results. When averaged 

across simulations, the model exhibited a novelty preference on the three step test, 

(M=.58, SD=.11), and a null preference on the one step test, (M=.48, SD=.12). These 

results indicate that infants, like the DNF model, can discriminate along a single, 

continuous feature dimension embedded within a multi-dimensional object.  

Next I used hierarchical regression to examine whether individual variations in 

infants’ looking behavior were related to test performance as in the DNF model. In 

particular, I performed the same hierarchical regression analyses on the infants as with 

the model. The first analysis showed that looking on the one step test accounted for a 

significant proportion of variance in novelty scores on the one step test, R
2
=.08 (see Table 

6). Like the DNF model, then, looking on the one step test is a good predictor of infants’ 



www.manaraa.com

 105 

performance on this fine-grained test. Next, I examined infants’ performance on the three 

step test. Results are shown in Table 7. For the three step test, shift rate, look duration, 

and shift rate together were good predictors of performance on the three step test, R
2
=.17. 

Looking on the one step test was not. These regression analyses on infants’ looking and 

discrimination performance are remarkably similar to analyses of the DNF model. The 

DNF model not only predicted how looking measures are related to performance across 

two different discrimination contexts, but the strength with which looking measures   

were predictive of discrimination performance was comparable for infants and the model.  

The critical prediction of the model is that robust memory can lead to familiarity 

bias under conditions where the familiar and novel item are similar. To probe this, I 

parsed infants into low and high groups based on median looking time on the one step 

test and examined the novelty scores. Results of the median split are shown in Figure 19 

along side model results for comparison. On the one step test, infants in the low looking 

group exhibited a familiarity preference (A), and infants in the high looking group 

exhibited a null preference (D). On the three step test, infants in the low looking group 

exhibited a novelty preference (G), and infants in the high looking group exhibited a 

novelty preference (J). To test whether test order or test dimension interacted with 

infants’ discrimination performance at test, I conducted a repeated measures analysis of 

variance (ANOVA) with test (one step, three step) as a within subjects factor and order 

(one step first, one step second) and test dimension (color, shape) as between subjects 

factors. The model only revealed a main effect of test, F(1,46)=11.76, p<.001. Infants 

exhibited stronger novelty scores on the three step test than on the one step test. For the 

primary analyses, the data were collapsed across test order and dimension.   
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 Pre-planned t-tests were used to test the central predictions of the DNF model. 

Infants in the low looking group exhibited a statistically significant familiarity preference 

on the one step test, t(24)=-1.95, p<.05, one-tailed, but infants in the high looking group 

exhibited no reliable preference on the one step test, t(24)=.62, p>.1, one-tailed. Infants in 

the low looking exhibited a statistically significant novelty preference on the three step 

test, t(24)=2.68, p<.01, one-tailed, and infants in the high looking group also exhibited a 

statistically significant novelty preference on the three step test, t(24)=3.61, p<.001, one-

tailed. As predicted, infants in the low looking group showed a robust familiarity bias late 

in learning when the familiar and novel items were similar, even when the one step test 

trial was presented after the three step test trial. In this case, then, infants showed a robust 

novelty-to-familiarity shift.  

In addition to comparing performance of each group to chance levels, I also 

directly compared performance across the two types of test trials. A paired t-test 

comparing performance of the low looking group across test trials revealed a significant 

difference between preference scores on the one step and three step tests, t(24)=2.90, 

p<.01, two-tailed. This difference was marginally significant for the high looking group, 

t(24)=1.96, p=.06, two-tailed. Finally, I compared performance on the one step test across 

groups. An unpaired t-test revealed a marginal effect, with lower preference scores for 

the low looking group relative to the high looking group, t(48)=1.91, p=.06, two-tailed.  

Looking on the one step test is a non-canonical index of individual differences in 

memory formation, but the DNF model predicted that this measure would be related to 

novelty preference scores. This measure is robustly linked to novelty preferences because 

it reflects the strength of memory – strong memory suppresses encoding of both the 
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familiar and novel item, leading to little looking. As additional evidence that infants in 

the low looking group do have a relatively more robust memory of the familiar stimulus 

than infants in the high looking group, I evaluated whether infants in the low looking 

group exhibited a decline in looking from the first block of two trials to the last block of 

two trials. Infants in the low looking group looked 6.08 s in the first block and 5.12 s in 

last block on average. This decline in looking was statistically robust, t(24)=2.22, p<.05, 

two-tailed. Infants in the high looking group looked 6.71 s in the first block and 6.98 s in 

the last block on average. This change in looking was not statistically robust, t(24)=-.70, 

p>.1, two-tailed. These results provide additional evidence that infants in the low looking 

group do have a relatively stronger memory than infants in the high looking group.  

Discussion 

 Visual foraging is an exploratory behavior that facilitates survival by locating 

novel items in the environment such as food and shelter. Foraging is also a mechanism by 

which knowledge about items in a visual scene is constructed. It is not surprising, then, 

that the novelty seeking aspect of foraging has been the focus of empirical research and 

theory. Novelty seeking is, after all, a signature of memory for items previously explored. 

This is reflected in theories of infant habituation and visual foraging in adults which 

assert that robust memory gives rise to recognition and novelty biases.  

Existing theories, however, do not paint a clear picture of how the context 

influences familiarity biases. For instance, whether adults exhibit a familiarity or novelty 

bias depends on the task context (Dodd et al., 2009). When searching for an item in a 

visual scene, adults rarely re-fixate previously fixated and remembered items. When 

casually viewing a scene, by contrast, adults frequently re-fixate previously fixated and 
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remembered items. Whether adults exhibit familiarity or novelty biases also depends on 

the stimulus context (Park et al., 2010). When viewing pairs of familiar and novel faces, 

adults exhibit a familiarity bias. When viewing pairs of familiar and novel scenes, adults 

exhibit a novelty bias. Related effects may generalize to infancy. For instance, whether 

infants exhibit a familiarity or novelty bias depends on the task context (Shinskey & 

Munakata, 2005). Infants are more likely to search for a remembered item in the dark and 

a novel item in the light, suggesting that robust memory might guide behavior toward 

familiarity in demanding task contexts.  

Here, I showed that robust memory in the DNF model and 10-month-old infants 

led to a familiarity bias while looking at similar familiar and novel items and a novelty 

bias while looking at dissimilar familiar and novel items. These results show that in a 

difficult discriminatory context, infants’ memory can guide their behavior toward 

familiarity.  

The present investigation makes a unique contribution to a growing literature on 

infants’ discrimination abilities. By 4 months of age, infants can discriminate between 

familiar and novel items that differ on two dimensions (e.g., a green cross from an orange 

circle), but not one dimension (e.g., a green cross from a green circle) (Cohen et al., 

1971; see also Cornell & Strauss, 1973; Saayman et al., 1964; Welch, 1974). By 6 

months of age, infants begin to respond to novel items that vary on one continuous, 

metrically organized magnitude dimension (e.g., area) embedded within 

multidimensional stimuli (Brannon et al., 2006; see also Brannon et al., 2007). Similarly, 

results reported here show that infants can discriminate along one continuous, metrically 

organized visual feature dimension embedded within a multidimensional object. 
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These data demonstrate that infants’ response to novelty is influenced by the 

degree of discrepancy between familiar and novel items. There is debate in the literature, 

however, regarding precisely how discrepancy impacts discrimination. Some researchers 

have shown that response to discrepancy follows an inverted u-shaped pattern, where 

infants respond to low and high levels of discrepancy less than to medium levels of 

discrepancy (McCall & Kagan, 1967; McCall & Melson, 1969). This discrepancy 

hypothesis has been tested with stimulus sets such as circles and crosses that constitute a 

line, from which different levels of discrepancy are created by manipulating the 

verticality and linearity of the line. When infants are familiar with circles and crosses 

aligned vertically, they respond more to a 90° rotation of the alignment (medium 

discrepancy) than to a 45° rotation of the alignment (low discrepancy) or a compression 

of the linearity of alignment of the items (high discrepancy). The aforementioned pattern 

of results has not been consistently observed, however, which may be influenced by 

similarity between familiar and novel items, the particular dimension being remembered 

and discriminated along, or both. For example, Welch  (1974) found that infants’ 

response to novelty increased linearly as the number of dimensions between the familiar 

and novel item increased from one, to two, to three. Similarly, Brannon et al. (2006) 

found that infants’ response to novelty increased linearly as the metric distance between 

the familiar and novel items increased. Here, I found that discrimination between similar 

items on color and shape dimensions surfaced as a familiarity bias. This result further 

complicates an already complex literature on infants’ response to metric discrepancies.  

Cross-study differences like those described above might arise from stimulus 

differences – infants’ discrimination can differ as a function of dimension, for instance. 
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One challenge in understanding infants’ discrimination abilities is controlling the 

stimulus dimensions to which they are exposed. I believe this is critical for understanding 

how infants’ memory representations impact looking to familiar and novel items (see also 

French et al., 2004) and how different stimulus dimensions (e.g., magnitude, feature, 

spatial, etc.) impact memory formation and discrimination. Here, I used a stimulus set 

that consisted of continuous feature dimensions with well-controlled metric properties. I 

found that, as a group, 10-month-old infants exhibited a novelty bias when the familiar 

and novel items were metrically dissimilar. Most critically, infants with a robust memory 

exhibited a familiarity bias when the familiar and novel items were metrically similar. 

Note that Brannon et al. (2007) manipulated metric similarity but did not report the same 

pattern of results. This may reflect differences in the feature dimensions probed across 

studies. It is also possible this reflects task differences: I tested infants in the VPC, 

whereas Brannon et al. used a single presentation habituation task. Infants do perform 

differently in preferential looking than single presentation contexts (Oakes & Ribar, 

2005). At present, however, such details are poorly understood. I contend that theoretical 

models, like the DNF, can foster understanding of this issue in future work. 

The present investigation also makes at least four theoretical contributions to 

domains of infant memory and visual exploration. First, I used a model of adult visual 

working memory and change detection to capture infant memory (Johnson et al., 2009). 

This model captures basic perceptual and memory processes in a canonical probe of 

visual working memory—change detection. One advantage of using this model is that it 

establishes developmental continuity in these basic perceptual and working memory 

processes. Indeed, the comparison of percepts with items maintained in memory has been 
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proposed to rely on working memory in infant looking tasks like the one used here 

(Oakes, Horst, Kovack-Lesh, & Perone, 2008; Oakes & Ribar, 2005; Ross-Sheehy et al., 

2003). The DNF model provides a process level account of how items enter working 

memory, how working memory influences recognition, and how perception and working 

memory work together to discriminate old from new items (see also, Perone, Simmering, 

& Spencer, 2010).  

Second, the DNF model provides an explanation for how memory can guide 

behavior toward familiarity (Dodd et al., 2009; Park et al., 2010; Shinskey & Munakata, 

2005). In the DNF model, a bias to look at a familiar over a novel item can arise from 

robust memory in the context of a challenging, fine-grained discrimination. This happens, 

in part, because stimuli are encoded and remembered in neural populations that interact 

over continuous, metrically organized dimensions. This enables working memory for one 

item to suppress encoding of highly similar items, leading to very weak support for 

continued fixation. This also arises, in part, because repeated stimulation of neurons 

raises their baseline level of responding via Hebbian learning. In the context of a similar 

novel item, this biases the system to continue fixating a familiar item. This, in turn, 

fosters enhanced learning about the familiar relative to the novel item which may be 

adaptive in demanding situations.  

These features of the DNF model enable robust memory to lead to a familiarity 

bias in one stimulus context and a novelty bias in another stimulus context. It is unclear 

whether or not a familiarity bias could arise from robust memory in existing models of 

infant looking and memory. Consider autoencoders as an example. An autoencoder 

consists of a small layer of hidden units sandwiched between identical input and output 
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layers. With repeated presentation of a stimulus, the hidden layer begins to produce the 

stimulus input vector on the output layer. This leads to low levels of error between the 

input and output layers as an internal representation is formed. In autoencoders, low 

levels of error are said to reflect low levels of looking. When a similar novel item is 

presented, it leads to an increase in error as the hidden layer accommodates the new 

stimulus input. Because error increases when the novel item is presented, looking would 

increase as well and the model would show a novelty bias. It is unclear how autoencoders 

or models that operate on the same principles could be modified to exhibit a familiarity 

bias in the context of robust memory.  

Third, the DNF model captures a rich set of looking dynamics measurable in the 

VPC. Remarkably, individual differences in looking were related to discrimination 

performance in similar ways in the DNF model and infants. Consistent with empirical 

findings, looking indices of processing speed were related to performance at test with a 

relatively easy discrimination (e.g., Rose et al., 2001; 2002). By contrast, a novel 

behavioral signature of robust memory—looking on the one step test—was related to 

performance on the one step test in both models and infants. Note that these individual 

differences emerged in the model without any parameter changes across simulations. In 

particular, the only difference across the 400 simulations conducted was stochastic 

fluctuations in the fixation and neural dynamics. Typically, individual differences in 

looking are described as a stable characteristic of the child’s cognitive system, and there 

is good evidence to support this (Colombo & Mitchell, 1990; Rose et al., 2001; 2002; 

2004). The present findings indicate that some individual differences emerge over the 

course of a task as infants stochastically distribute their looking among stimuli. In some 



www.manaraa.com

 113 

respects, this is consistent with results from Jankowski et al. (2001) showing that simply 

manipulating the distribution of infants’ looks influences their discrimination 

performance. The pattern of looking through time—whether emergent or influenced by 

the experimental context—may itself influence memory formation. 

 Finally, the DNF model complements ongoing neurophysiological research on 

infants’ visual recognition abilities. There is some debate about whether recognition in 

looking tasks reflects implicit or explicit memory (for a discussion, see Rose, Feldman, & 

Jankowski, 2007; Snyder, 2007). A number of studies point toward an implicit memory 

view, showing that neuronal activity becomes suppressed as items become familiar to 

infants (e.g., Nelson & Collins, 1998). This, in turn, may be sufficient to bias infants to 

look away from familiar items and toward novelty. Consistent with this view, Snyder 

(2010; see also Snyder, 2007) found that a decrease in ERP amplitude during encoding 

was associated with stronger preferences for novelty during test. Similarly, in the DNF 

model, strong activity in WM suppresses activity in PF. This leads to recognition and 

biases the model toward novelty. The neural dynamics within DNFs have been used to 

predict ERP responses in adults (McDowell, Jeka, Schöner, & Hatfield, 2002). Thus, 

DNFs may provide a strong theoretical bridge between behavioral and ERP measures in 

future work. 

 It is unclear whether working memory is directly involved in repetition 

suppression, that is, a reduction of neuronal responding as a stimulus becomes familiar 

(for a discussion, see Desimone & Duncan, 1995). Recent fMRI studies examining the 

neural dynamics involved in the maintenance of items in working memory suggest that 

working memory can have this effect. For example, Todd, Fougnie, and Marois (2005) 
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reported that the suppression of cortical networks involved in encoding increases as the 

number of items maintained in memory increases. These findings resemble the neural 

mechanisms of encoding and memory formation in the DNF model, with strong 

suppression of neural populations encoding remembered items over learning. 

Interestingly, Todd and Marois (2005) found that individual differences in the strength of 

activity within cortical working memory networks predicted performance in a change 

detection task. Similarly, I found here that strong activity in WM was associated with low 

levels of looking and enhanced discrimination between highly similar familiar and novel 

items. This suggests that a promising direction for future research will be to bring the 

DNF model together with neurophysiological measures of perceptual and memory 

processes.  

 In summary, in this chapter I generalized the DNF model from single presentation 

tasks to the VPC to capture a richer set of looking dynamics. I used the model to go 

beyond qualitative demonstrations of theoretical concepts to test the model empirically 

with infants. I found a remarkably similar relationship between looking and 

discrimination in the model and infants. Additionally, the empirical results showed that 

infants, like the DNF model, can discriminate along a single, continuous feature 

dimension embedded within a multi-dimensional object. This work takes an important 

step toward attaining a richer understanding of the link between looking and cognitive 

dynamics, the overarching goal of this thesis. This work also allows me to address one of 

the primary questions of this thesis: do looking and discrimination change together over 

development? In Chapter 5, I examine this question with infants and the generalized DNF 

model.   
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Figure 15. Generalized Dynamic Neural Field Model. Schematic 

of DNF model situated in visual paired comparison procedure. At 

the top is a world that contains identical multi-dimensional 

objects at left and right locations. The presence of objects in the 

task space presents noisy input to left and right nodes that 

compete for fixation via competitive, excitatory (blue arrows) and 

inhibitory (red arrows) interactions. When looking at a particular 

location, metric information is input into selectively tuned 

neurons within a PF tuned to one dimension (e.g., color) and a PF 

tuned to another dimension (e.g., shape).  
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Figure 16. Looking and Learning In Visual Paired Comparison. Illustrates how the 

DNF model looks and learns in the VPC during familiarization (left) and test (right) 

phases. The model stochastically looks among left (red line), right (blue line), and 

away (green line) locations (A). During familiarization, when looking left, the 

stimulus is input into PF (B). Via noise, the model switches gaze and begins to look to 

away locations. While looking away, PF activity subsides (C). Across fixations, the 

model encodes identical items (red stars) upon fixating each location. Thus, when the 

model switches gaze again and looks right, the stimulus is input into PF (D). During 

test, (in this example) the model looks left and then right (E). When looking left, the 

familiar item is input into PF (F). Working memory is strong and encoding in PF is 

weak. This leads the model to release fixation to the left location, and the model 

switches gaze to look right (see E). When looking right, the novel item (blue star) is 

input into PF. Activation in PF is strong because the novel item excites neurons in PF 

that are uninhibited by WM. This leads the model to look longer at the novel item, that 

is, the model exhibits a novelty preference.  
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Figure 18. Memory Induced Familiarity Bias. Panel A shows the state of PF and 

WM early in learning when looking at pairs of identical items. Activation in PF 

generated when looking is strong (black line, left y-axis) and activation in LTMPF 

begins to accrue (purple line, right y-axis). Activation in WM (black line, left y-axis) 

and LTMWM is weak. Looking time across pairs of identical items early in learning 

is high. Panels B-C show the source of novelty preferences when looking at a 

dissimilar novel item (B) and a familiar item (C). Activity in PF is strong when 

looking at a metrically dissimilar item relative to activity in PF when looking a 

familiar item. This gives rise to a novelty bias. Looking time is relatively higher than 

looking at pairs of identical items late in learning. Panels C-D show the sources of 

familiarity preferences in the context of robust memory when looking at a similar 

novel item (D) and a familiar item (C). Activity in PF is strong when looking at the 

familiar item relative to activity in PF when looking at the similar novel item. The 

similar novel item stimulates strongly inhibited neurons in PF by WM via Inhib (not 

shown). PF responds more strongly when looking at the familiar item because HLPF 

is robust late in learning and facilitates activity (see purple line, right y-axis). Note 

that looking time across the familiar item and similar novel item is low. 
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cuu 0.85 cww 0.97 cuv 0.70 cff 1.20 !inhib 10 !uhl 3.00

!uu 3.00 !ww 3.00 !uv 15.00 cfu 0.35 !build 15000 cwhl 0.30

cwu 0.20 cvu 0.80 cuf 1.00 !decay 100000 !whl 3.00

!wu 5.00 !vu 5.00 cb 1.00

cwv 0.07 cag 5.50

!wv 13.00 cs 6.50

cvw 3.00 csa 6.50

!vw 5.00 hrest 5.00

hdown 6.00

Hebbian Learning 

(hl)
PF(u) WM(w) Inhib(v) Fixation(f)

Time Scales 

(!)

Table 2. Model Parameters Visual Paired Comparison 
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Table 3. Predicting Working Memory Strength In Model 
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Table 4. Predicting One Step Novelty Score In Model 
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Table 5. Predicting Three Step Novelty Score In Model 
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Figure 19. Model Predictions and Experiment 1 Results. Panels A-C shows the 

preference scores for the low looking group (A), sum of activity in PF while 

looking at each item, and (C) the state of PF when looking at a familiar 

stimulus relative to the novel one step test. Activity in PF is relatively stronger 

when looking at the familiar than the novel item, giving rise to a familiarity 

bias regardless if the one step test was presented first or second. Panels D-F 

shows the same data for the high looking group when looking on the one step 

test. Activity in PF is comparable when looking at the familiar and one step 

test. The model and infants did not show a robust preference. Panels G-H 

shows the same data for the low looking group when looking on the three step 

test. Activity in PF is relatively stronger for the novel three step item than the 

familiar item. The model and the infants exhibited a novelty preference. 

Similar dynamics were observed for the high looking group on the three step 

test (J-L). Error bars are 1 SD. * significant one-sample t-test. 
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Table 6. Predicting One Step Novelty Score In Infants 
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Table 7. Predicting Three Step Novelty Score In Infants 
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CHAPTER 5 

DEVELOPMENTAL CHANGE IN SPEED OF  

PROCESSING AND DISCRIMINATION 

 In the previous chapters, I developed a new theory of infant looking and memory 

formation and empirically tested a novel prediction of the theory. In particular, in Chapter 

3, I showed that the DNF model overcomes several limitations of existing models of 

habituation. One key limitation of existing models is that they have not captured 

developmental changes in processing speed and discrimination within the same 

architecture. This limitation has precluded models from specifying whether 

developmental changes in processing speed and discrimination arise from the same or a 

different mechanism. I showed that the DNF model captures both types of developmental 

change. Critically, both arise from the same mechanism. 

 In Chapter 4, I generalized the DNF model to a more complex and ecologically 

valid task context—visual paired comparison. In the VPC task, infants explore multiple 

objects and exhibit rich patterns of looking dynamics that are meaningfully linked to 

cognitive processes. One goal was to investigate whether infants, like the DNF model, 

discriminate items that differ along a single continuous, metrically organized feature 

dimension embedded within a multi-dimensional object. Empirical results showed that 

infants do make such discriminations. In addition, I found that individual differences in 

looking were linked to discrimination performance in both the model and infants.  

The current chapter has three goals. The first goal is to investigate whether 

developmental change in discrimination along the metric feature dimensions of color and 

shape parallels developmental change in discrimination along magnitude dimensions, that 
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is, do infants exhibit an increased ability to discriminate along a metrically organized 

feature dimension with age. Recall that infants make increasingly subtle discriminations 

with age along magnitude dimensions such as temporal duration (Brannon et al., 2007). 

Similarly, Lipton and Spelke (2003) found that infants exhibited an increased ability with 

age to discriminate between numbers of sounds. These findings suggest that an ability to 

make increasingly subtle discriminations with age is a domain general developmental 

achievement. It is notable, however, that developmental change in discrimination has 

only been tested on magnitude dimensions. It is unknown whether infants also make 

increasingly subtle discriminations with age on visual feature dimensions such as color 

and shape. 

 The second goal of this chapter is to examine whether looking indices of 

processing speed and discrimination change together over development, and whether they 

are linked within individuals. Brannon et al. (2007) found that older infants habituated 

more quickly than young infants and discriminated between highly similar familiar and 

novel stimuli. However, in a replication they found no differences during habituation but 

a difference in discrimination still remained. Importantly, probing whether looking and 

discrimination change together over development was not the goal of their study. 

Moreover, they used an infant-control procedure that may have masked any relationships 

between looking and discrimination (for a discussion of looking in this procedure, see 

Cohen & Menten, 1981; Perone & Spencer, 2010). In another study, Rose et al. (2001) 

found that individual differences in shift rate, peak look, and look duration were all 

related to recognition performance. This finding might indicate that discrimination and 

processing speed are linked within individuals. However, disentangling discrimination 
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and recognition can be difficult. Strong memory can impact recognition and novelty 

biases, but this may not be related to fine-grained discrimination per se. Moreover, Rose 

et al. used high-dimensional items that varied on multiple dimensions rather than items 

that have well-controlled metric properties. Such stimuli are less suitable for studying 

developmental change in discrimination because it can be ambiguous what novelty 

preferences are based on. Here, I use a stimulus set with well-controlled stimulus 

properties that is more suitable for studying changes in discrimination abilities over 

development. 

 The last goal of this chapter is determine whether implementing the SPH in the 

DNF model can capture developmental change in looking dynamics and discrimination in 

the VPC. Chapter 3 showed that the SPH qualitatively captures developmental change in 

both looking and discrimination in a single presentation task. Chapter 4 showed that the 

DNF model can quantitatively capture the looking and memory dynamics of infants and 

make novel predictions in the VPC. Here, I aim to capture a range of looking behaviors 

across development in quantitative detail to take an additional step toward the 

overarching goal of this thesis—to attain a richer understanding of the link between 

looking and cognitive dynamics in the first year. 

 I pursued these goals in two steps. First, I tested 5-, 7-, and 10-month-olds’ 

discrimination between a familiar item and a similar (one step test) and dissimilar (three 

step test) item. In Experiment 1 (see Chapter 4), I observed that infants exhibited robust 

discrimination on the three step test. One question addressed here is how discrimination 

on the three step test changes over development. In Experiment 1, I also observed that 

individual differences in looking were linked to fine-grained discrimination on the one 
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step test and discrimination on the three step test. Another question addressed here, then, 

is whether individual differences in looking predict discrimination performance across 

development. The second step was to implement the SPH in the DNF model in an effort 

to capture developmental change in looking and discrimination performance observed in 

the present experiment. This addresses the question of whether a single mechanism 

underlies developmental changes in these two behavioral measures. 

Experiment 2 

Method 

Participants. Forty-five 5-month-old infants (M=170.31 days, SD=13.28 days), 39 

7-month-old infants (M=230.31 days, SD=7.74 days), and 35 10-month-old infants 

(M=303.11 days, SD=11.43 days) participated in this study. The data for 24 of the 10-

month-old infants were reported in Chapter 4.   

Stimuli, design, and procedure. The stimuli, design, and procedure were identical 

to Experiment 1 with one exception. All infants were presented with the one step test first 

and the three step test second. Typically in the infant cognition literature, primary tests of 

interest are presented first. This reduces one source of variance in infants’ test 

performance and, presumably, maximizes the likelihood that positive behavioral 

responses will be observed on critical tests. It also reduces sample size.  

Results  

Analyses are presented across three sections examining developmental change in 

discrimination, developmental change in looking indices of processing speed, and the 

link between individual differences in processing speed and discrimination. Preliminary 
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analyses revealed no effect of test dimension on test performance. Thus, data were 

collapsed on this variable. 

Familiarization. My first set of analyses examined developmental change in total 

looking during the familiarization phase and looking across the first and last block of two 

familiarization trials. These measures provide a general characterization of infants’ 

looking commonly examined in single presentation tasks. Figure 21A-B shows the mean 

total looking time (A) and looking on the first and last block (B) across development. I 

first evaluated total looking time statistically. A one-way ANOVA revealed that total 

looking time differed across age, F(2,116)=4.35, p<.05. Post-hoc comparisons revealed 

that total looking time was shorter at 10 months of age (M=34.90 s, SD=7.35) than at 5 

months (M=39.82 s, SD=8.66), p<.05, and total looking time was shorter at 7 months of 

age (M=35.15 s, SD=9.52) than at 5 months, p<.05. Infants exhibited less looking time 

overall with age. 

Next, I evaluated how looking across the first and last block change over 

development. To examine this, I conducted a repeated-measures ANOVA with block 

(first, last) as a within-subjects factor and age (5, 7, 10) as a between-subjects factor. The 

test revealed an age x block interaction, F(2,116)=3.01, p=.05. Tests of simple effects 

revealed that infants exhibited a decline in looking from the first to last block at 10 

months of age, F(1,116)=4.32, p<.05, a marginal decline at 5 months of age, 

F(1,116)=3.47, p<.10, but no decline at 7 months of age, F(1,116)=1.06, p>.1. 

Next, I examined developmental change in three looking indices of processing 

speed – shift rate, look duration, and peak look during familiarization. Figure 22A-C 

shows these indices across development. I evaluated developmental change in these 



www.manaraa.com

 135 

looking measures using one-way ANOVAs. The test for shift rate revealed a significant 

effect of age, F(2,116)=3.16, p<.05. Post-hoc comparisons revealed that shift rate at 10 

months of age (M=.53, SD=.16) was faster than at 5 months of age, (M=.42, SD=.25), 

p=.05. The ANOVA for look duration also revealed a significant age effect, 

F(2,116)=7.19, p<.001. Post-hoc comparisons revealed that look durations were shorter 

at 10 months of age (M=1.28 s, SD=.29) than at 5 months (M=1.95 s, SD=1.26), p<.01, 

and shorter at 7 months of age (M=1.41 s, SD=.56) than at 5 months, p<.05. Finally, there 

was a significant age effect for peak look, F(2,116)=8.43, p<.0001. Post-hoc 

comparisons revealed that peak looks were shorter at 10 months of age (M=3.85 s, 

SD=1.70) than at 5 months (M=5.6 s, SD=2.61), p<.001, and shorter at 7 months of age 

(M=4.08 s, SD=1.78) than at 5 months, p<.01.  These results indicate that there were 

robust changes in looking indices of processing speed over development, most 

dramatically between 5 and 7 months of age.   

Test. To determine whether discrimination performance interacted with test 

dimension over development, I conducted a repeated measures ANOVA with novelty 

score at test (one step, three step) as a within subjects factor and age (5, 7, 10) and 

dimension (shape, color) as between subjects factors. There were no significant effects. 

To increase power, I collapsed across test dimension for my primary analyses. I 

conducted two sets of analyses on infants’ looking behavior during the test phase. The 

first set of analyses centered on infants’ discrimination performance on the one and three 

step tests. Infants’ novelty scores on the one and three step tests are shown in Figure 23A. 

To determine whether infants exhibited novelty scores significantly greater than chance 

on the one and three step tests, I conducted a series of two-tailed, one-sample t-tests. 
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Infants did not exhibit a reliable preference on the one step test at 5 months of age, 

t(44)=-1.26, p>.1, 7 months of age, t(38)=.92, p>.1, or 10 months of age, t(35)=-.64, 

p>.1. On the three step test, 5-month-olds also did not exhibit a reliable preference, 

t(44)=1.06, p>.1. However, infants exhibited a reliable novelty preference on the three 

step test at 7 months of age, t(38)=3.50, p<.001, and 10 months of age, t(34)=3.29, p<.01. 

These results show an increased ability to discriminate along a continuous, metrically 

organized feature dimension with age.  

I also assessed whether there were any differences in test performance across 

development using a repeated measures analysis of variance (ANOVA). Test type (one 

step, three step) was a within-subject factor and age (5, 7, 10) was a between-subjects 

factor. Results revealed a main effect of test type, F(1,116)=11.35, p<.001, with higher 

novelty scores on the three step test (see Figure 19A). There was also a marginal main 

effect of age, F(2,116)=.2.78, p=.07. Post-hoc comparisons revealed that 7-month-olds 

exhibited a higher novelty score (M=.55, SD=.10) than 5-month-olds (M=.5, SD=.011), 

p=.05. Consistent with other findings from the visual recognition literature, therefore, 

infants exhibit stronger preferences for novelty with age.  

The next set of analyses examined whether shift rate and look duration during the 

test trials differed over development. Figure 24A-B shows shift rate (A) and look 

duration (B) on the one and three step tests across development. To evaluate shift rate, I 

conducted a repeated measures ANOVA with test (one step, three step) as a within-

subjects factor and age (5, 7, 10) as a between-subjects factor. There was a significant test 

x age interaction, F(2,116)=3.43, p<.05. Test of simple effects revealed that infants 

exhibited a higher shift rate on the three step test than the one step test at 10 months of 
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age, F(1,116)=9.48, p<.01, but infants exhibited no differences in shift rate across the 

tests at 5 months of age, F(1,116)=.11, p>.1, or 7 months of age, F(1,116)=.07, p>.1.  

I evaluated look duration using the same method. The test revealed a marginal age 

x test interaction, F(2,116)=2.36, p=.10. Test of simple effects revealed that infants 

exhibited a trend toward shorter look durations on the three step test than the one step test 

at 10 months of age, F(1,116)=2.95, p<.10, but infants exhibited no differences in look 

duration across test trials at 5 months of age, F(1,116)=.29 p>.1, or 7 months of age, 

F(1,116)=1.50, p>.1. In summary, infants showed robust discrimination on the three step 

test at 7 and 10 months of age, but not at 5 months of age. Moreover, looking dynamics 

across the one and three step tests differed at 10 months of age with an increase in shift 

rate and a decrease in look duration from the one to three step test. Below, I will show 

that these looking dynamics arise from subtle transitions in the state of memory across 

the test phase in the DNF model. 

Individual Differences. The analyses on infants’ data indicate that processing 

speed increases over development. Similarly, there is an increased ability to discriminate 

along a continuous, metrically organized feature dimension over development. But are 

these changes related within individuals? To probe this, I conducted a series of 

hierarchical regressions to test whether looking indices of processing speed accounted for 

a significant proportion of variance in novelty scores on the one and three step test trials. 

Note that I did not examine individual differences by parsing infants into groups based on 

median spits, as in Experiment 1. Instead, I used regression to examine the link between 

individual differences in looking and discrimination. Regression is a more sophisticated 

tool for examining how variables covary and depends less on the range of variability of a 
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given variable, such as the novelty score. Additionally, the key question in Experiment 1 

was whether infants with robust memory exhibited a familiarity bias in a demanding 

discriminatory context. Answering this question requires evaluating whether infants 

exhibited a novelty score significantly different from chance. Here, the key question is 

whether processing speed and discrimination are linked within individuals, which does 

not require infants, as a group, exhibit novelty scores significantly different from chance.  

The first analysis examined whether looking measures predict performance on the 

one step test above and beyond age. In the first step, I entered age as a predictor and 

novelty score on the one step test as the dependent measure. Results are shown in Table 

8. Age did not account for a significant proportion of variance in novelty scores on the 

one step test. However, looking indices of processing speed - shift rate, look duration, 

and peak look – did account for a significant proportion of variance in novelty scores on 

the one step test, R
2
=.08. Evaluating the beta weights indicates that shift rate is the 

strongest predictor in the context of the others. It is notable that the slope of the beta 

weight is negative, indicating that lower novelty scores (familiarity preferences) were 

associated with faster shift rates. This is consistent with the notion put forth in Chapter 4 

that strong memory induces a familiarity bias on this fine-grained test. Peak look was 

also a marginal predictor. In contrast to shift rate, however, the negative beta weight 

suggests that longer peak looks were associated with lower novelty scores on the one step 

test. This contrasts with typical notions of peak look, that is, that short peak looks reflect 

fast processing.  

In the last step, I evaluated whether total looking time on the one step test 

accounted for a significant proportion of variance in novelty scores on the one step test. 
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In contrast to Chapter 4, this measure was not a significant predictor. It is possible that 

the relationship between looking on the one step test and novelty scores revealed in 

Chapter 4 does not hold at younger ages (although a separate hierarchical regression did 

not reveal a significant interaction between looking on the one step test and age). It is 

also possible that this relationship is influenced by the order of test trials. Recall that the 

one and three step tests were not counterbalanced here.  

In the next analysis, I conducted the same regressions on data from the three step 

test. Results are shown in Table 9. The model was not significant on any step, that is, 

neither age nor looking measures were predictive of performance on the three step test.  

In summary, analyses of one step test performance revealed that looking indices 

of processing speed and discrimination change together over development and are linked 

within individuals. These results are consistent with the DNF model, which posits that 

processing speed and discrimination arise from the same developmental mechanism. 

These data are also consistent with data from Chapter 4 showing that processing speed 

and discrimination are robust within individuals in both the model and infants, although 

the nature of this relationship differed here. In the next section, I expand on these 

findings and probe whether the DNF model situated in the VPC can capture the co-

development of processing speed and discrimination in quantitative detail.  

Model Simulations 

Method 

 The goal of the model simulations was to test whether the SPH could capture 

developmental change in looking and discrimination performance in the VPC. Toward 

this end, I tested whether the DNF could capture an array of looking measures over 
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development. In particular, I aimed to capture 6 measures from familiarization at each 

age (18 total) including total looking, looking on the first and last block of two trials, shift 

rate, look duration, and peak look. I also aimed to capture 3 measures from each test trial 

at each age including novelty score, shift rate, and look duration (18 total). Across all 

three age groups, then, the total number of data points to be captured was 36. 

 The first step in modeling the data from Experiment 2 was to evaluate whether the 

parameters used in Chapter 4 with 10-month-olds were suitable for the larger number of 

variables to be captured with 10-month-olds here. Recall that I did not quantitatively 

model looking measures from familiarization in Experiment 1. The model generally 

captured infants’ performance on a variety of measures. However, the model produced a 

qualitatively different pattern of shift rate across the one and three step tests. In particular, 

10-month-olds in Experiment 2 showed an increase in shift rate across the one and three 

step tests, but the model produced the opposite pattern. This makes some sense in the 

model. When the model looks at the familiar stimulus on the one step test, activation in 

PF is quickly suppressed by WM. This leads the model to release fixation and switch 

gaze. When the model looks at the novel stimulus on the one step test, activation in PF is 

also quickly suppressed by WM. This again leads the model to release fixation and 

switch gaze. Across gaze shifts, then, the model accumulates a high shift rate. When the 

model looks at the novel stimulus on the three step test, by contrast, activation in PF is 

strong and provides support for fixation. This slows the release of fixation and gaze 

switching, leading to a lower shift rate. The difference in shift rate across the one and 

three step tests, then, reflects a meaningful relationship among interactions between PF, 

WM, and the fixation system in the model.  
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The question posed here, however, is whether the model can also show the 

opposite pattern at test, that is, the higher shift rate on the three step test shown by 10-

month-old infants in Experiment 2. To examine this, I modified the parameters for the 

10-month-old model to qualitatively reverse the pattern of shifting across the one and 

three step tests to gain a better understanding of the dynamics that underlie this behavior. 

As I discuss below, modification of the model’s parameters did produce the opposite shift 

rate pattern at test. Thus, I present these new 10-month-old parameters in the sections 

below. 

 A critical question before discussing the simulation results, however, is whether 

these new 10-month-old parameters still produce the novel prediction tested in 

Experiment 1, that is, that infants who exhibit low levels of looking on the one step test 

also exhibit a familiarity preference on the one step test. To examine this, I re-simulated 

Experiment 1 with the new parameter set and parsed simulations into low and high 

looking groups based on total looking time on the one step test. As is shown in Figure 

25B, low looking simulations exhibited a familiarity preference on the one step test, and 

both groups exhibited a novelty preference on the three step test. The data for 10-month-

old infants from the current sample are also shown for comparison. Only low looking 10-

month-olds in Experiment 2 exhibited a familiarity preference on the one step test, and 

both groups of infants showed a novelty preference on the three step test. Thus, the DNF 

model with the new parameter settings produces the same pattern of results across 

Experiments 1 and 2, and these results, once again, provide a good quantitative match to 

10-month-olds’ performance. 



www.manaraa.com

 142 

 The next step in testing whether the SPH can capture developmental change in 

looking and discrimination was to implement the SPH in the model using the same 

method as in Chapter 3 for the single presentation task (see also Schutte & Spencer, 

2009). Recall that the SPH posits that the strength of excitatory and inhibitory 

interactions increase over development. To implement the SPH, I began with the new 10-

month-old parameters and worked backward in development. In particular, I weakened 

self-excitation in PF (cuu) and WM (cww) as well as the strength of inhibition from Inhib 

to PF (cuv) and to WM (cwv) to create 7- and 5-month-old models. As in previous 

chapters, 200 simulations were run for each age group to produce robust model results. 

Parameter settings are shown in Table 10. 

Results 

 I describe the model results across three sections. In the first section, I present 

model results from the familiarization phase. Next, I present model results from the test 

phase. In the last section, I present regression analyses on the model testing whether 

looking indices of processing speed in the model, like infants, is predictive of 

discrimination performance.  

 Familiarization. The DNF model captured global patterns of looking over 

development quite well. Figure 21 shows total looking time accumulated during the 

familiarization phase and looking during the first and last block for infants (A-B) and the 

model (C-D). Over development, total looking time in the model (C) and infants (A) 

declined. The decline was most dramatic between 5 and 7 months of age for infants and 

the model. The model did not capture the pattern of looking across the first and last 

blocks (D). The 10-month-old model, like 10-month-old infants, did exhibit a slight 
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decline from the first to last block. By contrast, the 5-month-old model exhibited a slight 

increase in looking from the first to last block while 5-month-old infants exhibited the 

reverse pattern. Note, however, that the total looking time in each block was in the right 

quantitative range across ages. 

 What is the source of the developmental decline in total looking in the DNF 

model shown in Figure 21C? This decline reflects an increase the speed of working 

memory formation and the overall strength of working memory over development as 

shown in Figure 26. The top portion of the figure shows the sum of PF activity when the 

model looked at the familiar stimulus across trials. For the 5-month-old model (A), PF 

activity showed an increase over trials that was stronger than the increase for the 7- (B) 

and 10-month-old (C) models. This increase reflects the accumulating strength of the 

Hebbian contribution to PF. Notably, both the 7- and 10-month-old models show a 

decline in PF activity late in familiarization as working memory becomes more robust 

(see lower panels of Figure 26E-F).  This reliably releases fixation and the model shows 

an overall decline in total looking.  

 The next simulation results are shown in Figure 22 which shows three looking 

indices of processing speed for infants (A-C) and the model (D-F). As the strength of 

neural interactions increased, the model exhibited a higher shift rate (D), shorter look 

durations (E), and shorter peak looks. Notice that the model captured the developmental 

pattern in some detail – the decline in look duration from 5 to 7 months of age, for 

instance, was steeper than from 7 to 10 months of age. These developmental changes in 

looking dynamics are once again evident in the neural dynamics captured in Figure 26. 

The strong WM peaks for the 7- and 10-month-old models led to relatively quick 
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suppression of PF activity while looking at the familiar stimulus. This led to a high 

likelihood that the model would switch gaze, have short look durations, and short peak 

looks.  

 Test. The model results from the familiarization phase show that the SPH can 

capture developmental changes in looking indices of processing speed. Can the DNF 

model with the same developmental parameters also capture changes in discrimination? 

Recall that infants’ exhibited a robust novelty preference on the three step test at 7 and 10 

months of age, but not 5 months of age. As can be seen in Figure 23B, the 7- and 10-

month-old models, but not the 5-month-old model, exhibited a robust novelty preference 

on the three step test.  

 These developmental differences arise from a shift in the contribution of PF 

activity associated with the familiar and novel stimulus over development. Figure 27A-C 

shows the sum of PF while looking at the familiar (black bar) and novel (red bar) items 

across development. For the 5-month-old model (A), PF activity was comparable while 

looking at the familiar and novel items. This led to a null preference overall. For the 7- 

(B) and 10-month-old (C) models, PF activity associated with the novel item was 

stronger than the familiar item. This led to a novelty preference.  

The developmental shift in PF activity associated with the familiar item arises 

from a shift in the interaction between PF and WM. This can be seen in the bottom 

portion of Figure 27, which shows the state of PF and WM while looking at the familiar 

(black line) and novel (red line) stimulus on the three step test across development. When 

the 5-month-old model looks at the familiar and novel stimulus (D), activation associated 

with each stimulus is quite similar. For the 7- (E) and 10-month-old (F) models, however, 
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activation is stronger while looking at the novel item than while looking at the familiar 

item. This has two sources. First, WM activity associated with the familiar item is supra-

threshold during the test trial (see red line at site 90 in WM). This produces inhibition in 

PF. Second, PF activity associated with the novel item is sustained because updating of 

WM is slowed due to competition with the familiar item. Notice that WM activity 

associated with the novel item is stronger in the 5-month-old model than the 7- and 10-

month-old model. This happens because activation in WM grows from a lower level in 

the older models.  

The same analysis of the model’s performance on the one step test is shown in 

Figure 28. Here, activation in PF associated with the familiar item was stronger than on 

the three step test for the older models. This led the 10-month-old model to dwell longer 

on the familiar item during the one step test relative to the three step test, leading to 

longer look durations and a lower shift rate. This is shown in Figure 24C-D. Although the 

developmental trends here are more dramatic in the model than in infants’ performance, 

the model replicates the critical finding of an increase in the shift rate for the 10-month-

olds on the three step test. This arises from a shift in WM across test trials. During the 

one step test, WM activity associated with the familiar item was relatively weaker (-.26) 

than during the three step test (.27). The increase in WM activity during the three step test 

enabled the model to quickly suppress activity associated with the familiar item and 

switch gaze to the novel item. 

Individual Differences. In Chapter 4, I found that individual differences in looking 

were predictive of discrimination performance in infants and the model. This was quite 

remarkable, given that individual differences in the model were emergent, that is, there 
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were not parameter manipulations that made some models exhibit more and less mature 

patterns of looking. Here, I used the DNF model to capture a wider array of looking 

measures than in Chapter 4, and I have captured them across three developmental time 

points during the first year. Recall that individual differences in looking indices of 

processing speed were predictive of discrimination on the one step test. To test whether 

the model exhibits the same pattern of results, I conducted the same regression analyses 

on the model data. 

Table 11 shows results of the first analysis predicting the novelty score on the one 

step test. On the first step, age was entered as a predictor; on the second step, looking 

indices of processing speed were entered; and on the last step, looking time on the one 

step test was entered. As can be seen in the table, all predictors captured a significant 

proportion of variance. Critically, consistent with the empirical results, looking indices of 

processing speed accounted for a significant proportion of variance in novelty score on 

the one step test above and beyond the effects of age, change in R
2
=.02. And consistent 

with results in Chapter 4, looking on the one step test continued to be a good predictor of 

performance on the one step test.  

The regression results for the three step test are shown in Table 12. As in the 

infant analyses, none of the predictors captured a significant proportion of variance in 

three step test performance. Overall, individual differences in looking dynamics in the 

model were predictive of discrimination in ways comparable to analyses of infants’ 

performance. As in Chapter 4, the proportion of variance in novelty scores accounted for 

by looking measures was comparable for infants and for the model. The DNF model, 
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then, realistically captures the magnitude of the relationship between processing speed 

and discrimination. 

 Evaluating Model Fits. The DNF model captured developmental change in 

looking indices of processing speed and discrimination. The simulations also provided 

insights into the mechanisms that underlie looking dynamics across familiar and novel 

items that vary in their metric similarity. Visual inspection of the simulation results 

suggests that the DNF model was able to capture data from the familiarization and tests 

phases across development in some detail. To evaluate the fit of the model simulations to 

the infant data, I calculated the Root Mean Squared Error (RMSE) for means and 

standard deviations across all ages for four categories: looking time (total looking, 

looking on block one and block three, and peak look), shift rate (shift rate during 

familiarization, shift rate on one step test, shift rate three step test), duration (look 

duration familiarization, look duration one step test, look duration three step test), and 

novelty score (novelty score one step test, novelty score three step test). I also computed 

the RMSE for a second batch of 200 simulations at each age to ensure that the model 

produced replicable results. The results are shown in Table 13. Across all categories, the 

RMSE was comparable for the original simulations and the replication simulations.  The 

model fit for means was good. The model produces a particularly good fit for novelty 

scores (.03). The model fit for standard deviations were also good, except for looking 

time (3.46). The model produced less variability in total looking than did infants.  

Testing The Spatial Precision Hypothesis 

 The simulation results presented in the preceding section show that implementing 

the SPH in the DNF model can capture developmental changes in processing speed and 
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discrimination in the VPC. This extends findings from Chapter 3 showing that 

implementing the SPH in the DNF model captured developmental changes in looking and 

discrimination in a single presentation task. There, however, I also found that increasing 

the strength of excitatory and inhibitory interactions within WM was sufficient to capture 

the developmental changes in performance, even when excitatory and inhibitory 

interactions within PF were relatively weak. 

Here, I tested whether increases in the strength of neural interactions within WM 

were also sufficient to capture developmental change in looking and discrimination in the 

VPC. As in Chapter 3, I set self-excitation and inhibition within PF to the values to be 

weak, that is, to match the 5-month-old model and increased the strength of self-

excitation in WM (cww) and the strength of the inhibitory connection from Inhib to WM 

(cwv) to the values of the 7-month-old model in one set of simulations, and to the values 

of the 10-month-old model in a second set of simulations. There are two critical 

theoretical issues. First, does manipulating WM strength over development fit the data 

from Experiment 2 like the implementing the SPH does? The RMSE for these 

simulations are shown in Table 13 (see “5 Mo PF”). As can be seen, the RMSE is 

comparable to the original simulations in which the SPH was implemented for all 

measures except looking time. Implementing the SPH fit looking time much better than 

manipulating WM strength.  

These results indicate that changes in neural interaction strength within PF make a 

contribution to the developmental profile. To probe the contribution of PF, I asked 

whether changes in the strength of WM were equally effective at fitting the infant data 

from Experiment 2 when the initial state of PF was stronger. I set the strength of PF to 
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match the 7-month-old model. In one batch of simulations, I set WM strength to match 

the 5-month-old model, and in another batch of simulations, I set WM strength to match 

the 10-month-old model. The RMSE for these simulations are shown in Table 13 (see “7 

Mo PF”). As can be seen, the RMSE is comparable to the simulations in which the initial 

state of PF was set to match the 5-month-old model: the simulations fit all measures well 

except looking time. In addition, when the initial state of PF was set to match the 7-

month-old model, the model failed to capture developmental change in discrimination 

between 5 and 7 months of age. Figure 29 shows the novelty scores on the three step test 

for infants (left), the DNF model when the SPH was implemented (middle), and the DNF 

model when WM strength was manipulated with PF set to match the 7-month-old model 

(right). As can be seen in the figure, only implementing the SPH captured developmental 

change in discrimination. 

In summary, regardless of whether PF was weak or strong, increasing the strength 

of WM alone did not fit the data from Experiment 2 as well as the SPH. When PF was 

strong, increasing the strength of WM alone did not capture developmental change in 

discrimination. These tests of the SPH suggest that changes in WM must be considered in 

the context of PF.  

Discussion 

 Looking dynamics change dramatically across the first year of life. Changes in 

three looking measures have been studied extensively – shift rate, look duration, and peak 

look (Colombo & Mitchell, 1990; Rose et al., 2001; 2002; Ruff, 1975). With age, shift 

rate increases, look duration decreases, and peak look decreases. Developmental and 

individual differences in these looking dynamics are also associated with a decrease in 
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exposure time to form a memory and recognize a stimulus. For this reason, these three 

looking measures have become well-known looking indices of processing speed. During 

the same developmental period that processing speed is changing, infants are also 

exhibiting an increased ability to make subtle discriminations along continuous 

dimensions. No previous study has investigated whether looking indices of processing 

speed and discrimination change together over development and are linked within 

individuals.  

 Experiment 2 showed that 7- and 10-month-olds, but not 5-month-olds, 

discriminated between dissimilar familiar and novel items on a continuous feature 

dimension, that is, older infants discriminated on the three step test. Experiment 2 also 

showed that look durations and peak looks became shorter between 5 and 7 months, and 

shift rate increased between 5 and 10 months of age. These findings indicate that 

discrimination and looking indices of processing speed change together over 

development at the group level of analysis. This supports the notion that processing speed 

and discrimination change together over development. The stronger claim of the DNF 

model, however, is that developmental changes in looking and discrimination arise from 

the same mechanism. The finding that looking indices of processing speed were 

predictive of novelty scores at test, that is, that individual differences in looking were 

linked to discrimination performance in both infants and the model, provides support for 

this claim.  

One accomplishment of the DNF model is that it captures developmental change 

in looking and discrimination within the same architecture. Model simulations of the 

single presentation task showed that developmental change in looking and discrimination 
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emerged from the same mechanism – changes in the strength of excitatory and inhibitory 

neural interactions. In this chapter, I addressed whether this same developmental 

mechanism can capture changes in looking and discrimination in the VPC. It was not 

immediately obvious that changes in the strength of neural interactions would capture 

performance in the VPC. Looking dynamics are considerably more complex – infants’ 

looks are distributed across pairs of items, giving rise to measures such as shift rate not 

measurable in single presentation tasks. Moreover, discrimination is measured as a bias 

for one stimulus within a single trial instead of differential looking across two trials. The 

theoretical question, then, was whether changes in neural interaction strength are 

sufficiently general to capture developmental change in performance across tasks. 

The simulation results showed that a simple mechanistic change specified by the 

SPH can capture developmental changes in looking indices of processing speed and 

discrimination. Moreover, tests of whether the SPH was required to capture these 

developmental changes suggest that increases in the strength of neural interactions in 

both PF and WM make a critical contribution to performance: model fits were improved 

when all four SPH parameters were changed, and the specific parameters for neural 

interactions in PF placed constraints on the qualitative pattern of discrimination 

performance over development.  

The simulations of developmental change in looking in the single presentation 

task in Chapter 3 and the VPC here indicate that increases in the strength of neural 

interactions is a general developmental mechanism that spans multiple domains of 

cognition. I implemented the SPH in the very same way as Schutte and Spencer (2009) 

did to capture children’s performance in spatial recall tasks and Simmering (2008) did to 
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capture developmental changes in visual working memory. Thus, there appears to be 

continuity in these basic neural processes across development. There is also continuity in 

the consequences of the SPH on memory representations. In infants, stronger interactions 

lead to more stable and more precise memory representations, but memory 

representations are still less stable and less precise than in older children. For example, 

WM peaks during infancy only enter the self-sustaining state after prolonged exposure 

and rely on a strong contribution from a Hebbian process. WM peaks during childhood, 

by contrast, enter the self-sustaining state after relatively brief exposure to a stimulus and, 

therefore, rely less on Hebbian learning to enter this working memory state. 

The DNF model also captured looking dynamics in impressive detail. At 10 

months of age, for instance, the model produced an increase in shift rate from the one to 

the three step test. I showed that this behavior arises from a subtle shift in memory for the 

familiar item across the test phase. Moreover, as in Chapter 4, individual differences in 

looking during familiarization were related to differences in discrimination in a similar 

fashion in both models and infants. This suggests that individual differences need not 

reflect differences in the developmental state of each child; rather, some differences can 

emerge as initial differences in looking cascade over learning. Note that this does not 

imply that there are no stable characteristics of infants that influence looking. Indeed, 

there is good evidence that characteristics of the infant do stably influence looking. 

Infants born premature, for example, exhibit less mature patterns of looking and 

recognition performance than similarly aged term infants (Rose et al., 2001; 2002). In 

addition, individual differences in looking can be stable across ages (Colombo, Mitchell, 

O’Brien, & Horowitz, 187; Rose et al., 2001). Nevertheless, the present simulation and 
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empirical findings demonstrate that an important direction for future research is to 

understand the joint influence of emergent and stable sources of individual differences. 

Interestingly, individual differences in looking and discrimination were related 

somewhat differently across Chapters 4 and 5. In Experiment 1 (Chapter 4), looking on 

the one step test was predictive of discrimination on the one step test, and looking indices 

of processing speed were predictive of discrimination on the three step test. In 

Experiment 2 (Chapter 5), looking indices of processing speed were predictive of 

discrimination on the one step test. It is unclear what precisely contributed to this cross-

study difference. The experiments did differ in two important ways. First, in Experiment 

1, the order of the one and three step tests were counterbalanced across infants; in 

Experiment 2, however, the one step test was presented first for all infants. Second, in 

Experiment 1, only 10-month-olds participated; in Experiment 2, multiple age groups 

participated.  

These cross-experiment differences could be probed experimentally. One could 

extend Experiment 2 by adding a sample of infants that experience the three step test 

first. Although this would make an important contribution, it would also be an expensive 

and lengthy task. An alternative is to run the experiment with an artificial sample of 

infants using the DNF model to gain some insight into the potential role of test order 

across development. The crucial issue is whether looking indices of processing speed are 

predictive of performance on the three step test across development when the order of test 

trials is counterbalanced. To address this issue, I ran the 5-, 7-, and 10-month-old model 

with the test order reversed. I then conducted hierarchical regressions to test whether 
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looking indices of processing speed predict performance on the three step test and the one 

step test. 

Table 14 shows the results for the one step test. As in Experiment 1, I entered 

looking indices of processing speed into the model first, followed by looking on the one 

step test second. The model was significant on both steps. I also asked whether order is 

related to novelty scores, and whether age is a significant predictor. Both predictors were 

statistically robust. Finally, I entered an age x order interaction term. The positive beta 

weight for the interaction term indicates that novelty scores on the one step test increase 

over development when the one step test is presented second. 

Table 15 shows the regression results for the three step test. Interestingly, looking 

indices of processing speed were marginally predictive of novelty scores on the three step 

test. The interaction term—entered fifth—was also significant. The negative beta weight 

indicates that novelty scores on the three step test increase over development when the 

three step test is presented first. This indicates that, for the model, looking indices of 

processing speed are predictive on both the one step and three step test when the order of 

the one and three step tests are counterbalanced across individual simulations. 

These simulations highlight one utility of a theoretical model. In particular, these 

simulations provide insight into the predictability of looking indices of processing speed 

under multiple task conditions. The simulations revealed that test order and age influence 

how looking is related to discrimination in complex ways. Testing these predictions will 

be an important goal for future empirical work.   

In summary, the present chapter examined whether developmental change in 

looking indices of processing speed and discrimination change together over 
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development. The empirical results showed that, indeed, shift rate, look duration, and 

peak look changed between 5 and 10 months, and these changes paralleled changes in 

discrimination. I also found that individual differences in looking indices of processing 

speed were linked to discrimination performance, which supports the conjecture derived 

from the DFT that looking and discrimination are linked mechanistically.  

The SPH was able to capture developmental changes in looking and 

discrimination in the VPC. The simulation results presented here provide support for the 

hypothesis that increasing representational precision is a domain general developmental 

achievement. In particular, I captured developmental change in infants’ discrimination 

abilities along a continuous feature dimension using the same mechanism that has been 

used to capture developmental change in the precision of children’s working memory for 

spatial locations (Schutte & Spencer, 2009). The empirical results also provide support 

for this hypothesis. Interestingly, capturing developmental change in precision in the 

DNF model was an emergent property of neural interactions. Strong interactions between 

WM and PF enabled the model to recognize and detect novelty faster and more precisely 

over development.  

In Chapter 6, I examine whether looking indices of processing speed and 

discrimination change together in at-risk infants. There is good evidence that looking 

indices of processing speed follow the same developmental trajectory across typically 

developing and atypically developing infant populations. However, how discrimination 

changes over development in at-risk infants has not previously been tested.  Testing 

discrimination in at-risk infants will contribute to our understanding of how infant 
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populations differ. This is an especially important issue because at-risk populations are 

often studied to gain insights into the meaning of individual differences.  
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Figure 21. Looking Time Results for Infants and DNF Model. The top row shows 

infant data from Experiment 2. Mean total looking time across development (A) and 

looking time on the first and last block of two trials (B). The bottom row shows DNF 

model data. Mean total looking across familiarization (D) and looking time on the first 

block and last block (F). Error bars represent 1 SD. * significant post-hoc test. † 

marginally significant post-hoc test. 
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Figure 22. Processing Speed In Infants and Model. Panels A-C show infant data 

from Experiment 2. Mean shift rate (A), look duration (B), and peak look (C) for 

infants in Experiment 2. Panels D-F show the same data for the DNF model data. 

Mean shift rate (D), look duration (E), and peak look (F). Error bars represent 1 SD. 

* significant post-hoc test. † marginally significant post-hoc test. 
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Figure 23. Discrimination In Infants and Model. (A) Novelty scores for infants on 

the one and three step tests from Experiment 2. (B) Novelty scores for the DNF 

model. Error bars are 1 SD. * significant one-sample t-test. 
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Figure 24. Looking Dynamics At Test In Infants and Model. Looking dynamics 

during test for infants in Experiment 2 (A-B) and DNF model (C-D). Mean shift rate 

on the one and three step tests (A,C) and mean look duration on the one and three 

step test (B,D). Error bars are 1 SD. * significant post-hoc test. 
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Table 8. Predicting One Step Novelty Score In Infants 
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Table 9. Predicting Three Step Novelty Score In Infants 
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Figure 25. Cross-Parameter Stability. Novelty scores on one and three step test for 10-

month-olds in Experiment 2 (A) and DNF model (B) when parsed into low and high 

looking groups as in Experiment 1. 
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Figure 26. Developmental Change In Processing Speed In DNF Model. Shows 

neural dynamics in DNF model underlying looking behavior during familiarization 

phase. Top row shows sum of PF activity while looking on each trial across the 

familiarization phase for the 5-month-old model (A), 7-month-old model (B), and 

10-month-old (C) model. PF activity was stronger for the 5-month-old model than 

the 7- or 10-month-old models. Bottom row shows the state of PF and WM during 

the inter-stimulus interval after each familiarization trial, averaged across 

simulations. Neural interactions were weaker in the 5-month-old model (D), 

leading to stronger PF activity than in the 7- (E) and 10-month-old models (F) with 

stronger neural interactions.  The stronger neural interactions of the older models 

gave rise to less total looking, higher shift rates, shorter look durations, and shorter 

peak looks relative to the weaker neural interactions in the younger model. 
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Figure 27. Developmental Change In Discrimination In DNF Model. Shows neural 

dynamics in the DNF model that underlie developmental change in discrimination 

on the three step test. Top row shows the sum of PF activity while looking at the 

familiar item (black bars) and novel three step item (red bars) for the 5-month-old 

(A), 7-month-old (B), and 10-month-old (C) models. PF activity associated with 

the familiar item decreased over development. This led the older models to 

preferentially look at the novel relative to the familiar item. The bottom row shows 

the state of PF and WM while looking at the familiar item (black line) and novel 

three step item (red line). For the 5-month-old model, activation was comparable 

while looking at the familiar and novel item (D), leading to a null preference. For 

the 7-month-old (E) and 10-month-old (F) models, activation was stronger while 

looking at the novel item than while looking at the familiar item. This arises from 

suprathreshold activity associated with the familiar item in WM (see arrows), 

which produces strong inhibition in PF. 
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Figure 28. Fine-Grained Discrimination Across Development In DNF Model. Neural 

dynamics in the DNF model that underlie performance on the one test. Top row 

shows the sum of PF activity while looking at the familiar item (black bars) and 

novel one step item (red bars) for the 5-month-old (A), 7-month-old (B), and 10-

month-old (C) models. PF activity associated with the familiar and novel item was 

comparable across development, leading to null preferences on the one step test for 

each model. The bottom row shows the state of PF and WM while looking at the 

familiar item (black line) and novel one step item (red line). Activation associated 

with the familiar and novel item were comparable for the 5-month-old (D), 7-month-

old (E), and 10-month-old (F) models. However, in the older models activation 

associated with the familiar item was on the cusp of suprathreshold activity, which 

surfaced during the subsequent three step test trial.   
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Table 11. Predicting One Step Novelty Score In Model 
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Table 12. Predicting Three Step Novelty Score In Model 
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Table 13. Model Fits 
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Figure 29. Novelty Scores For Tests of SPH. Novelty scores on three 

step test across development for infants in Experiment 2 (left), DNF 

model when the SPH was implemented in the model to capture 

developmental change (middle), and DNF model when PF was strong 

and WM strength was increased to capture developmental change 

(right).  
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Table 14. Predicting One Step Novelty Score in Model Test Order Reversed 
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Table 15. Predicting Three Step Novelty Score in Model Test Order Reversed 
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CHAPTER 6 

SPEED OF PROCESSING AND DISCRIMINATION IN  

AT-RISK INFANT POPULATIONS 

  The overarching goal of this thesis is to attain a deeper understanding of the link 

between looking and cognitive dynamics. One aspect of achieving this goal has been to 

develop a DNF model of infant looking and memory formation that overcomes 

limitations of previous models. A major accomplishment of the model was to capture 

developmental changes in discrimination and processing speed within the same system. 

This enabled me to evaluate whether these changes can arise from the same mechanism. 

Simulations of the DNF model showed that these developmental changes can, indeed, 

arise from the same mechanism—increases in the strength of neural interactions. 

  A fundamental assumption of DNFs is that stimuli are represented along 

continuous, metrically organized dimensions. Experiment 1 showed that infants, like the 

DNF model, can discriminate along a continuous feature dimension. Experiment 2 

showed that developmental change in discrimination along a continuous feature 

dimension parallels changes in discrimination along continuous magnitude dimensions in 

visual and auditory domains, corroborating the notion that representational precision is a 

domain general developmental achievement. Experiment 2 also showed that looking 

indices of processing speed and discrimination change together over development, and 

that fine-grained discriminations and processing speed are linked within individuals. 

These findings, together, support the claim of the DFT that processing speed and 

discrimination change together over development and arise from the same mechanism. 
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Individual differences have also been studied in at-risk – most often preterm – 

infant populations. The motivation to study the looking behavior of preterm infants has 

largely been to test the processing speed hypothesis. The rational is that the adverse 

neonatal history of many premature infants should impact the neural processes 

underlying basic cognitive processes. The looking behavior of preterm infants generally 

resembles that of younger typically developing infants (Rose et al., 2001; 2002), which 

has been taken as additional evidence for the hypothesis that less mature patterns of 

looking within a sample of a given age reflect less mature cognitive processes.  

Studying the looking behavior of preterm infants is also important clinically. 

Preterm infants are at risk for developmental delays in basic cognitive processes, special 

needs in the classroom, disabling conditions such as mental retardation, and diagnoses of 

childhood mental disorders such as Attention Deficit Disorder with Hyperactivity and 

Autism (Alyward, 2005; Biederman, Prince, Fischer, & Faraone, 2002; Larsson et al., 

2005; Wilkerson, Volpe, Dean, & Titus, 2002). Studies on infant looking indicate that 

such delays are evident during infancy. If a rich enough understanding of the link 

between looking and cognitive dynamics can be attained, then looking might be 

successfully used as an early assessment tool. This, in turn, sets the stage for developing 

interventions that capitalize on the flexibility of the developing brain early in the first 

year. This is one long-term goal of this thesis. 

  In this chapter, I address three empirical questions surrounding the literature on 

the looking dynamics and recognition performance of at-risk infants that takes a first step 

toward this goal. The first question is whether looking indices of processing speed and 

discrimination follow the same developmental trajectory in at-risk infants as in typically 
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developing infants. In the infant cognition literature, it is assumed that the processing 

speed of at-risk infants is delayed developmentally. This assumption has received some 

empirical support. Preterm infants generally exhibit looking dynamics and recognition 

performance that resembles younger, typically developing infants (Rose et al., 2001; for a 

review, see Rose et al., 2004; 2007). Importantly, the looking dynamics and recognition 

performance of preterm infants appears to follow the same developmental trajectory as 

typically developing infants: with age, preterm infants exhibit faster shift rates, shorter 

look durations, shorter peak looks, and stronger novelty scores. Upon closer inspection, 

however, typically developing and preterm infants do not always exhibit different 

behavioral patterns. Rose et al. (2002) found that typically developing and preterm 

infants differed in time to recognition at 5, 7, and 12 months of age but on looking 

indices of processing speed only at 12 months of age. In a serial recognition task, 

typically developing and preterm infants exhibited no differences in recognition 

performance (Rose et al., 2001b). An unresolved issue is why only some task conditions 

elicit population differences in performance. 

  A second question that this chapter tackles is whether population differences in 

looking indices of processing speed and discrimination are observed in the variant of the 

VPC used in Experiments 1 and 2. This variant differs from the VPC task used by Rose et 

al. (2001). In the VPC used here, infants are presented with a pair of identical items 

across 6 10 s trials. Looking dynamics such as shift rate are calculated across these trials. 

Discrimination is then tested on subsequent test trials and a single novelty score is 

obtained. In Rose et al’s VPC, infants were familiarized with a stimulus and tested 

multiple times with different stimuli. For instance, an infant saw a face for 5 s and the 
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infant’s recognition of the face was tested. Then, the infant saw another face for 5 s and 

recognition was again assessed, and so on. In this context, looking dynamics such as shift 

rate were calculated across a series of familiarization trials with different stimuli. 

Although the two variants of the VPC share many commonalities, subtle differences 

might influence whether population differences are observed.  

  The third and last question this chapter addresses is centered on risk factors. 

Studies of preterm infants’ looking and recognition performance often have an interest in 

whether or not risk factors are associated with performance. Evaluating associations 

between risk and performance is believed to provide insights into how an infant’s 

neonatal history impacts real-time cognitive and behavioral dynamics. Such evaluations 

have lent support to the processing speed hypothesis – as described above, the rational is 

that adverse neonatal experience negatively impacts neurological development, 

measurable by looking indices of processing speed.  

The link between risk and laboratory performance is not perfectly clear, however, 

because there is not a consistent pattern between risk factors and performance across 

studies (Sun, Mohay, & O’Callaghan, 2009; Rose et al., 2001; 2002). For example, in 

Rose et al’s (2001) VPC, various measures of medical risk – presence of respiratory 

distress syndrome, days on respirator, days on oxygen, days in hospital, and APGAR 

scores – were related to various aspects of infants’ performance. In Rose et al’s (2002) 

processing speed task, by contrast, no risk factors were associated with performance. The 

picture is further complicated by changes in the factors that are related to various 

measures of performance across development. For instance, how many days infants are in 

the hospital may be associated with shift rate at 5 months of age but not 7 months. One 
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approach to coping with this type of instability is to identify common factors that underlie 

multiple risk factors. For example, number of days on a ventilator, number of days on 

oxygen, and number of days in the hospital are often correlated and may be best 

described by an underlying “health” dimension. Here, I explore whether multiple risk 

factors can be reduced to a small number of common factors and whether these factors 

are associated with looking and recognition performance.   

Experiment 3 

Method 

Participants. The final sample consisted of 66 infants. All infants were enrolled in 

the Iowa High-Risk Follow-up Program at the Children’s Hospital of Iowa at the 

University of Iowa Hospitals and Clinics. Seventy-seven percent of infants were born at 

or prior to 37 weeks gestation and admitted to the Neonatal Intensive Care Unit shortly 

after birth. However, some infants were enrolled in the program due to other risk factors 

surrounding the neonatal period and born after 37 weeks gestation. Infants in the high-

risk program routinely visit the clinic at approximately 4, 8, and 12 months postnatal age; 

however, there was considerable variability in the age at which this sample of infants 

visited the clinic (e.g., many infants visit at 3, 5, 9 and 14 months postnatal age). All 

infants were recruited during their scheduled appointment to the clinic and tested at a 

convenient time during the visit.  

The corrected age for each infant was calculated by subtracting the number of 

days each infant was born premature from the age at test.  Infants were parsed into young 

and old groups based on a natural divide in corrected age near the median. The younger 

group consisted of 32 infants and was on average 4 months of age (M=111.94 days, 
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SD=37.39). I will refer to this group as 4-month-olds. The older group consisted of 34 

infants and was on average 10 months of age (M=289.56 days, SD=85.99). I will refer to 

this group as 10-month-olds.  

  Stimuli, design, and procedure. The stimuli, design, and procedure were identical 

to Experiment 2.  

Results  

I begin the results section with tests of looking measures during familiarization 

and test. After that, I investigate population differences in looking, individual differences 

in looking, and the relation between risk and looking.  

Familiarization. Figure 30A-B shows two global characterizations of looking 

during the familiarization phase over development - mean total looking time (A) and 

looking on the first and last block (B). An unpaired t-tests revealed that 10-month-olds 

exhibited less total looking time than 4-month-olds, t(64)=2.49, p<.05. To examine 

whether looking across the first and last block changed over development, I conducted a 

repeated-measures ANOVA with block (first, last) as a within-subjects factor and age (4, 

10) as a between-subjects factor. The test revealed a marginal main effect of block, 

F(1,64)=2.91, p=.09, and a marginal age x block interaction, F(1,116)=3.56, p=.06. Tests 

of simple effects revealed that 10-month-olds exhibited less looking on the last block 

than the first block, F(1,64)=12.31, p<.001, but 4-month-olds did not, F(1,64)=1.21, 

p>.1. 

As with typically developing infants in Experiment 2, the primary analyses of 

looking dynamics focused on developmental change in three looking indices of 

processing speed – shift rate, look duration, and peak look (see Figure 31A-C). I 
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evaluated developmental change in these looking measures using unpaired t-tests. Ten-

month-olds exhibited a higher shift rate than 4-month-olds, t(64)=-2.56, p<.05, shorter 

look durations, t(64)=2.71, p<.01, and shorter peak looks, t(64)=3.30, p<.01. These 

changes suggest a robust increase in speed of processing over development in this sample 

of preterm infants.  

Test. Infants’ novelty scores on the one and three step tests are shown in Figure 

32. To determine whether infants exhibited novelty scores that differ significantly from 

chance, I conducted a series of two-tailed, one-sample t-tests. On the one step test, the 

young group did not exhibit a reliable preference on the one step test, t(31)=-.98, p>.1, 

nor did the old group, t(33)=.49, p>.1. On the three step test, the young group exhibited a 

reliable novelty preference, t(31)=2.50, p<.05, but the old group did not, t(33)=.79, p>.1. 

These results indicated that young at-risk infants, but not relatively older infants, 

discriminate between dissimilar familiar and novel items. I also assessed whether there 

were any differences in test performance across development using a repeated measures 

ANOVA with test type (one step, three step) as a within-subject factor and age (4, 10) as 

a between-subjects factor. There were no significant effects.  

As with typically developing infants in Chapter 5, I examined whether shift rate 

and look duration differed across the one and three step test over development (see Figure 

33A-B). To evaluate shift rate, I conducted a repeated measures ANOVA with test (one 

step, three step) as a within-subject factor and age (4, 10) as a between-subjects factor. 

There was a significant main effect of age, F(1,64)=5.96, p<.05, indicating that 10-

month-olds, overall, exhibited a higher shift rate during the test phase than 4-month-olds 

(see Figure 33A). I evaluated look duration during test using the same method. There was 
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a main effect of age, F(1,64)=6.45, p<.05. Overall, the 4-month-olds exhibited longer 

look durations at test than did 10-month-olds. There was also a significant age x test 

interaction, F(1,64)=6.45, p<.05. Tests of simple effects revealed that 10-month-olds 

exhibited marginally shorter look durations on the three step test than the one step test, 

F(1,64)=3.28, p=.07, whereas 4-month-olds exhibited similar look durations across the 

one and three step tests, F(1,64)=2.33, p>.1.  

Population Differences in Performance. One question this experiment seeks to 

answer is whether the variant of the VPC used here yields comparable population 

differences as the VPC used by Rose et al. (2001). This is an important question because 

cross-study differences in task and stimulus appear to influence whether or not population 

differences are observed. Recall that in Rose et al’s VPC task, infants were familiarized 

with pairs of identical items on a single trial followed by a recognition test. These 

researchers found that 5-, 7-, and 12-month-olds differed on a number of looking 

measures and recognition performance. However, the measures on which infants differed 

were inconsistent across stimulus type (faces and patterns) and across ages. In Rose et 

al’s (2002) processing speed task, infants were familiarized with pairs of different stimuli 

across trials – one that remained unchanged (familiar) and one that changed (novel). In 

this task, population differences were observed in the number of trials to recognize the 

familiar stimulus but few differences in looking dynamics were observed until 12 months 

of age. Note that examining whether variants of the VPC yield comparable population 

differences is also important for assessment purposes. If each task and stimulus context 

leads to different conclusions with respect to population differences, developing a general 

early assessment tool becomes a more difficult challenge. 
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I evaluated whether the VPC variant used here yielded similar results to Rose et 

al. (2001). Following Rose et al., I compared looking indices of processing speed from 

familiarization and comparable measures from test between similarly aged typically 

developing and at-risk infants. Across Experiments 2 and 3, the closest age matches were 

between 5- and 10-month-old typically developing infants and 4- and 10-month-old at-

risk groups, respectively. I focused my analyses on the looking measures that were most 

comparable across the variant of the VPC used here and the VPC used by Rose et al. 

(2001).  

Table 16 shows the results for the young group. Looking measures from 

familiarization are shown on the top and from test on the bottom. Shown on the right is 

whether or not Rose et al. (2001) observed population differences for faces or patterns. 

The results from the present study revealed significant differences between populations 

for shift rate and peak look during familiarization.  Rose et al. also found differences on 

these measures, but observed a difference for look duration with patterns as well. During 

test, differences across populations were observed for shift rate and look duration on the 

one and three step tests. Rose et al. found differences on these measures for pattern 

stimuli as well. By contrast, these researchers reported a difference across populations for 

novelty scores with faces. In summary, analyses for the young group revealed a pattern of 

results that are, in many respects, comparable to results from Rose et al. (2001) with 

pattern stimuli. 

Table 17 shows the same analyses for the old group. Results revealed cross-

population differences on all three looking indices of processing speed during 

familiarization. Rose et al. (2001) found similar results for shift rate and look duration but 
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not peak look. During test, no population differences were observed in the present study, 

whereas Rose et al. found differences for each measure either with faces or patterns.  

 Overall, the VPC used here yields comparable population differences during the 

familiarization and test phases early in development. Five of six population differences 

across familiarization and test phases observed by Rose et al. for patterns were also 

observed here. Later in development, population differences were comparable during the 

familiarization phase, but not during test. I return to a discussion of these data in the 

General Discussion. 

Individual Differences. In Experiments 1 and 2, individual differences in looking 

indices of processing speed were predictive of discrimination performance within 

typically developing infants. One question is whether age and looking are related to 

discrimination in a similar way across infant populations. In other words, can the 

regression equation for typically developing infants also predict the novelty scores of at-

risk infants? To probe this, I used the unstandardized beta weights from regressions from 

typically developing infants to generate a predicted novelty score. I then evaluated the 

correlation between the predicted and observed novelty scores for at-risk infants. I used 

the unstandardized beta weights from the last step in Table 11 for the one step test in 

which shift rate, look duration, and peak look accounted for a significant proportion of 

novelty score variability. The correlation coefficient was r=.08, p>.1. For the three step 

test, I used the unstandardized beta weights from the last step in Table 12, in which no 

measures accounted for a significant proportion of novelty score variability. The 

correlation coefficient was robust, r=-.25, p<.05, but the predicted novelty scores were in 

the opposite direction. This suggests that age and looking are related to discrimination 
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across infant populations in different ways. To examine how age and looking are linked 

to discrimination in at-risk infants, I conducted the same hierarchical regressions for 

infants in Experiment 3 as for typically developing infants in Experiment 2.  

In the first analysis, I examined how age and looking indices of processing speed 

were related to performance on the one step test. Results are shown in Table 18. Across 

the board, these regression analyses were consistent with Experiment 2. In particular, age 

did not account for a significant proportion of variance in novelty scores on this test trial. 

However, looking indices of processing speed captured a marginal proportion of variance 

above and beyond age, change in R
2
=.10. Looking on the one step test was not a robust 

predictor. Inspection of the beta weights for the processing speed measures showed some 

differences relative to Experiment 2. For typically developing infants, shift rate was a 

strong predictor. For at-risk infants, look duration was a relatively strong predictor.  

For the second analysis, I conducted the same regression but predicted 

performance on the three step test. Results are shown in Table 19. Age accounted for a 

marginally significant proportion of variance in novelty scores on this test, R
2
=.04. 

Consistent with the group analyses, the negative beta weight indicates that novelty scores 

decreased with age. Additionally, looking indices of processing speed accounted for a 

significant proportion of variance in novelty scores on the three step test above and 

beyond age, change in R
2
=.11. This is consistent with results of Experiment 1 with 10-

month-olds, but not results of Experiment 2. Inspection of the beta weights indicates that 

look duration was the strongest predictor. Finally, looking on the one step test was not 

predictive of variance in three step test scores. 
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Overall, results of the regression analyses indicate that speed of processing and 

discrimination performance are, in fact, related in an at-risk population. The most robust 

predictor was look duration during familiarization. At-risk infants with shorter look 

durations showed higher novelty scores on the one and three step tests. 

Risk Factors. The delayed performance of at-risk infants has generally been 

attributed to risk factors surrounding the neonatal period that are assumed to negatively 

impact the neural mechanisms underlying processing speed. The relationships between 

risk factors and looking measures have been assessed using correlations. Whether risk 

factors are correlated with looking measures has been inconsistent across studies, ages, 

and variables. In some studies, risk factors are correlated with looking and in other 

studies they are not; some risk factors are related to looking at one age but not at other 

ages; and some risk factors are related to one looking measure while other risk factors are 

related to another. This variation across studies makes interpretation difficult. 

A different approach to exploring whether risk factors are related to looking 

measures is to characterize a collection of variables by an underlying dimension or factor. 

I used factor analysis to determine whether this was feasible. In particular, I used 

principle components analysis to determine whether common dimensions underlie 

subsets of the risk factors shown in Table 20. Inspection of a scree plot revealed that two 

components could be characterized by common factors. For the first factor, lower birth 

weight, prematurity, days in the hospital, days on a ventilator, days on oxygen, 

respiratory distress, and pulmonary distress were associated. I labeled this component 

“health.” For the second factor, days spent on the ventilator and whether or not the 

mother smoked were associated. I labeled this component “parent-infant lung function.”  
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Regression was used to obtain a unique score for each individual on each 

dimension/factor (i.e., health and parent-infant lung function). Using this score, I 

conducted a series of correlations with looking indices of processing speed as well as 

discrimination
1
. Results for looking measures during familiarization are shown in Table 

21 and for test in Table 22.  As can be seen, no looking measures were correlated with the 

health or parent-infant lung function dimensions duration familiarization. However, lung 

function showed a modest correlation with shift rate and look duration on the three step 

test.  

Rose and colleagues have found that, for the very same infants, some task 

contexts yield population differences but no relations between risk factors and looking 

(Rose et al., 2001; 2002). The VPC used here did yield comparable population 

differences in looking relative to Rose et al. (2001). It is unclear, then, why the VPC used 

here did not capture relations between risk and looking. What is clear is that subtle task 

and stimulus differences can dramatically change whether population differences are 

observed and whether relations between risk factors and looking are observed. It is 

possible that some particular combinations of task conditions are more sensitive than 

others to this source of variance. It is also possible that risk factors have a complex and 

non-linear relationship to performance measured in laboratory tasks. It is notable that 

although these analyses did not reveal many robust relations between risk factors and 

looking, these relations were only evaluated within an at-risk sample of infants who are, 

as a group, impacted negatively by factors surrounding the neonatal period. These 

analyses do not indicate that health and parent-infant lung function have no impact on 

                                                 
1
 There were no significant correlations between any risk factor alone and looking 

measures during familiarization or test. 
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looking, but rather, these analyses indicate that within an at-risk sample, variation on 

these dimensions does not strongly covary with looking. 

Discussion 

 Experiment 3 addressed three questions. The first question was whether 

processing speed and discrimination along a continuous feature dimension follow the 

same developmental trajectory across typically developing and at-risk infant populations. 

In Experiment 3, measures of processing speed changed systematically over 

development, that is, looking indices of processing speed changed in a similar way as 

typically developing infants in Experiment 2. Moreover, regression analyses showed that 

looking indices of processing speed were related to discrimination performance. These 

results are consistent with previous studies showing that developmental change in at-risk 

infants’ performance in memory tasks follows the same trajectory as typically developing 

infants (Sun et al., 2009; Rose et al., 2001; 2002). However, I did not find that older at-

risk infants exhibit more mature discrimination performance than younger at-risk infants. 

I return to a discussion of this finding below. 

 Some studies have shown that at-risk infants exhibit behavior that resembles 

younger typically developing infants (e.g., Rose et al., 2001). Other studies, however, 

have reported no cross-population differences in performance. The second question 

addressed in Experiment 3 was whether the VPC variant used here yields population 

differences in looking indices of processing speed as the VPC variant used by Rose et al. 

(2001) does. This is an important question because, across studies, the stimulus and task 

context influences whether or not population differences are observed. Looking measures 

are a good candidate for assessing basic cognitive function in at-risk populations. 
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However, the task context must be sensitive to individual and population differences. 

Results generally showed that the VPC variant used here captures population differences 

in looking indices of processing speed, that is, at-risk infants exhibited looking dynamics 

that were less mature than similarly aged typically developing infants. One caveat is that 

the age range in the sample in Experiment 3 was more variable than in Experiment 2 and 

in other studies. An open question is whether the VPC variant used here continues to 

yield population differences in looking indices of processing speed with a more restricted 

age range for comparison. 

 The last question Experiment 3 addressed was whether common dimensions could 

be identified that characterize multiple risk factors. Previous studies have examined 

correlations between individual risk factors and looking, but results have been 

inconsistent. In some studies, risk factors are unrelated to looking. In other studies, risk 

factors are related to some looking measures but not others and, critically, whether risk 

factors are related to a given looking measure can change or even disappear over 

development. Moreover, interpreting individual risk factors and their relation to looking 

measures can be difficult. Here, I used factor analysis to determine whether common 

dimensions underlie multiple variables. Results showed that, indeed, health and parent-

infant lung function dimensions could be used to characterize the risk of infants. Risk on 

these two dimensions, however, was not generally related to looking indices of 

processing speed, suggesting that the VPC variant used here was not sensitive to the 

contribution of these factors to performance or, alternatively, that these risk factors have 

a complex relationship to behavioral performance in laboratory tasks.  
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Infants’ scores on the parent-infant lung function dimension were marginally 

correlated to shift rate and look duration on the three step test. Although this correlation 

is difficult to interpret, it is interesting that a relation to these particular looking dynamics 

was observed. Recall that in Chapter 5, the 10-month-old model exhibited a high shift 

rate and short look durations on the three step test relative to the one step test. These 

dynamics emerged from an increase in memory across the test phase. It is possible that 

the relations between risk and these looking measures reflect something about these 

underlying memory dynamics. This suggests that the DNF model might be a useful tool 

for understanding how risk factors impact cognitive dynamics. 

 The results of Experiment 3 were generally consistent with previous studies. 

There were similar changes in looking over development in at-risk infants as typically 

developing infants, for example, and at-risk infants exhibited less mature patterns of 

looking that similarly aged typically developing infants. However, I also observed here 

that at-risk infants’ discrimination does not appear to follow the same trajectory as 

typically developing infants. Interestingly, I found that the discrimination of young at-

risk infants resembles that of older typically developing infants, whereas the 

discrimination of older at-risk infants resembles that of younger typically developing 

infants. In particular, 4-month-old at-risk infants exhibited evidence of discrimination on 

the three step test, but 10-month-old at-risk infants did not. An open empirical question is 

whether even older at-risk infants would exhibit discrimination on the three step test, that 

is, is the developmental trajectory of discrimination u-shaped for at-risk infants?  

It is notable that there was considerable variability in age within the 4- and 10-

month-old samples. One direction for future research will be to examine how 
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discrimination changes over development when age is more tightly constrained. 

Nevertheless, Experiment 3 suggests that young at-risk infants discriminate between 

dissimilar familiar and novel items but older at-risk infants do not? Although speculative, 

one possible reason for this finding is that the immature looking dynamics of at-risk 

infants actually facilitates memory formation. Four-month-old at-risk infants exhibited 

longer peak looks and slower shift rates than similarly aged typically developing infants. 

Long peak looks and few gaze switches may facilitate memory formation. As infants’ 

peak looks become shorter and they switch gaze more with age, memory formation may 

be hampered. This possibility is not consistent with the processing speed framework 

where speed is hypothesized to increase with development. This leads to improved 

recognition. Here, I found that looking changes over development in a manner that is 

consistent with notion that processing speed is increasing over development. However, 

the poorer recognition of older infants is inconsistent with this notion. Within a dynamic 

systems framework, this possibility does make sense - the dynamics of one system – in 

this case, the fixation system – can influence the dynamics of another – in this case, 

processing. By this view, memory formation, an inherently time-dependent process, may 

actually be enhanced in a young infant with underdeveloped fixation dynamics.  

In Chapters 3 and 5, I captured developmental change in looking in the DNF 

model by manipulating the neural dynamics that govern perceptual and memory 

dynamics. Clearly, developmental changes in memory formation can influence the 

temporal dynamics of looks, as in the DNF model. However, changes in looking 

dynamics might also influence memory formation. To capture the looking and 

discrimination performance of 6- to 12-week-old infants in a single presentation task, 
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Perone and Spencer (2010) implemented the SPH on the fixation system of the DNF 

model to increase the length of fixation durations.  

There are pronounced changes in gaze shifting early in development that may 

influence memory formation in young infants. In particular, Robertson et al., (2001) 

measured the body movements of 1- and 3-month-olds while they looked at an array of 

toys and found that periods of body movement preceded shifts of gaze and returned to 

baseline after the onset of fixation. Interestingly, the body movements of 1-month-olds 

were protracted relative to 3-month-olds, slowing shifts of gaze. Slowed gaze shifting 

maintains fixation on a particular stimulus. Moreover, 1-month-olds make several slow 

saccades when shifting gaze, whereas 2- and 3-month-olds make relatively fewer and 

faster saccades when shifting gaze (for a review, see Johnson, 2002). These changes in 

fixation dynamics might occur independently of changes in memory dynamics. 

Inspection of Tables 16 and 17 show that typically developing and at-risk infants differ 

on looking measures but not recognition measures. This might indicate that typically 

developing and at-risk infants primarily differ in occulomotor control.  

Although slow gaze shifting is viewed as a sign of slow processing (e.g., Rose et 

al., 2002), slow gaze shifting might actually facilitate memory formation. Indeed, Perone 

and Spencer (2010) showed that manipulating fixation dynamics in the DNF model such 

that look durations were prolonged facilitated memory formation, while short look 

durationshampered memory formation. The rate of gaze shifting might also influence the 

contribution that novel items can make to the maintenance of fixation. When the fixation 

system in the DNF is tuned such that it tends to frequently switch gaze, the response of a 

novel item has to be quite strong to sustain fixation. In this thesis, I only manipulated four 
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developmental parameters that influence the strength of neural interactions in a 

perceptual and working memory field. These changes were sufficient to capture 

developmental change in looking dynamics and discrimination between 5 and 10 months. 

Nevertheless, there are dramatic improvements in motor sources of gaze shifting during 

this period. Consistent with this, Perone and Spencer (2010) found that changes in the 

fixation system of the DNF model were required to capture learning in infants between 1 

and 4 months of age. This suggests that an exciting direction for future research is to 

examine the trajectory along which fixation and memory dynamics change over 

development and influence the interaction between looking and cognition.  

 In summary, looking indices of processing speed develop along the same 

trajectory across at-risk and typically developing infant populations. This is consistent 

with previous studies showing the same cross-population developmental pattern (Rose et 

al., 2001). Interestingly, discrimination does not appear to develop along the same 

trajectory as with typically developing infants. Young at-risk infants discriminate 

between dissimilar familiar and novel items, but older at-risk infants do not. The looking 

dynamics of young at-risk infants appear to be less developmentally advanced than 

similarly aged typically developing infants. It is possible that the less mature looking 

dynamics of young at-risk infants facilitates memory formation and/or novelty detection. 

The findings reported here add to our understanding of how infant populations differ. 

However, they also show that developmental change in looking and discrimination can be 

linked in complex ways. This suggests that a promising direction for future work would 

be to use computational models like the DNF model to try to understand how patterns of 

performance change both across tasks and across development.  
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Figure 30. Looking Time In At-Risk Infants. Shows looking time accumulated 

across familiarization (A) and looking time during the first and last block (C) for at-

risk infants in Experiment 3. Error bars represent 1 SD. * statistically significant for 

total looking; post-hoc significant for looking time across blocks. 
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Figure 32. Discrimination In At-Risk Infants. 

Novelty scores for at-risk infants in Experiment 

3. Error bars represent 1 SD. * significant one-

sample t-test 
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Figure 33. Looking Dynamics At Test For At-Risk Infants. Mean shift rate on the one 

and three step test (A) and mean look duration on the one and three step test (B) for at-

risk infants in Experiment 3. Error bars represent 1 SD. * statistically significant; † 

marginal post-hoc test. 
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Table 18. Predicting One Step Novelty Score In At-Risk Infants 
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Table 19. Predicting Three Step Novelty Score In At-Risk Infants 



www.manaraa.com

 205 

 

Table 20. List of Risk Factors 
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Table 21. Correlations Between Risk and Processing Speed 
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GENERAL DISCUSSION 

 The overarching goal of this thesis was to gain a richer understanding of the link 

between looking and cognitive dynamics. During the past half-century, our understanding 

of the origins of cognition has grown immensely. This growth is largely attributable to 

the use of looking measures to study basic cognitive processes. Looking measures have 

enabled researchers to study developmental change in attention (Ruff, 1975), speech 

(Saffran et al., 1996), visual perception (Johnson, 1996), visual categorization (Oakes  et 

al., 1997), working memory for colors (Ross-Sheehy et al., 2003) and locations (Oakes, 

Ross-Sheehy, & Luck, 2006), cross-modal processing (Bahrick, 2001), and word learning 

(Werker et al., 1998). Looking measures have also stirred controversy (for reviews, see 

Haith, 1998; Spelke, 1998). Historically, many debates within the field of infant 

cognition have been centered on various interpretations of looking measures. A better 

understanding of the link between looking and cognition could help resolve such debates 

(see Schöner & Thelen, 2006).  

Looking is a powerful empirical tool, but it is also an active behavior by which 

infants explore their world, acquire knowledge, and interact with social partners. The 

accumulation of such interactions can have a profound positive impact on the social and 

cognitive development of at-risk infants (Landry et al., 2008). A better understanding of 

the active nature of looking could help develop interventions in which social partners 

play on looking to gain access to and alter cognitive dynamics in atypically developing 

children.  

 To attain a richer understanding of the link between looking and cognitive 

dynamics, I proposed a dynamic field theory of infant looking and memory in Chapter 3 



www.manaraa.com

 209 

and formalized the theory in a DNF model. The DNF model was able to overcome three 

limitations of existing models. One limitation is that existing models have not captured 

non-linear changes in memory and looking (Colombo et al., 1990; Roder et al., 2000). 

The DNF model overcame this limitation via the non-linear transition into the working 

memory state that occurs during learning. Simulations showed that this leads to an 

associated non-linear decline in looking when simulations were aligned on the trial of 

working memory formation.  

 A second limitation of existing models is that they have not captured the active, 

exploratory nature of looking. Instead, they treat looking as a behavioral output of 

cognitive processing. How infants distribute their looks, however, is intertwined with 

memory formation (Jankowski et al., 2001). The distribution of looks in the DNF model 

is also intertwined with memory formation – fast processing simulations exhibit fewer 

looks, longer look durations, and more looking time early in learning than slow 

processing simulations.  

 The last limitation of existing models is that they have not captured 

developmental change in looking indices of processing speed and discrimination within a 

single system and, therefore, have not specified whether these changes can arise from the 

same or a different mechanism. I generalized the Spatial Precision Hypothesis (SPH) 

from the domain of spatial cognitive development (Schutte et al., 2003; Schutte & 

Spencer, 2009) to the domain of infant looking and memory, which posits that the 

strength of excitatory and inhibitory interactions increase over development. Remarkably, 

these same changes in neural interactions that capture children’s performance in spatial 

recall tasks captured developmental change in looking indices of processing speed, the 
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time course of working memory formation, and discrimination. I was able to show, then, 

that these changes can arise from the same mechanism over development. 

  In Chapter 4, I generalized the DNF model from the single presentation task 

context to the VPC by expanding the fixation system to explore multiple locations. The 

VPC allows infants to explore objects at multiple locations, and in this way is a more 

ecologically valid task context. I showed that the generalized model could capture the 

richer set of looking dynamics measurable in the VPC, such as shift rate, without any 

modification to the principles that govern the perceptual, memory, and fixation system in 

the DNF model.  

The generalized DNF model is a dynamic, autonomous exploratory system. A 

signature of exploratory systems is familiarity and novelty seeking. It has long been 

assumed that familiarity biases are driven by initial encoding of new items, and novelty 

biases are driven by robust memory for familiar items. Indeed, all theories of infant 

habituation posit that familiarity biases arise prior to novelty biases (Hunter & Ames, 

1988; Sirois & Mareschal, 2004). Whether adults exhibit a familiarity or novelty bias, 

however, depends on the task (Dodd et al., 2009) and stimulus context (Park et al., 2010). 

This is the case even when memory for familiar items is robust.  

The conditions under which familiarity and novelty biases arise is a particularly 

salient issue in the infant cognition literature. Many debates have been centered on 

whether a given preference is a familiarity or novelty preference, the choice of which can 

sometimes radically change the conclusions drawn from a study (see Cashon & Cohen, 

2000). Recent evidence indicates that robust memory can lead to familiarity bias when 

the task context is a demanding one (Shinskey & Munakata, 2005). Consistent with this 
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finding, in Chapter 4 I tested and confirmed a prediction of the DNF model that 

familiarity biases can arise from a robust memory when familiar and novel items are 

highly similar, that is, in a demanding stimulus context. 

More specifically, the model predicted that the same robust memory late in 

learning induces a familiarity bias when familiar and novel items are similar and a 

novelty bias when familiar and novel items are dissimilar. In the most radical case, the 

model predicted a novelty-to-familiarity shift across test trials. Additionally, analyses of 

the model’s looking and neural dynamics showed that low levels of looking across 

similar familiar and novel items (one step test) were associated with stronger working 

memory and familiarity preferences. When simulations were split into low and high 

looking groups based on a median split of looking time on the one step test, only low 

looking simulations exhibited a familiarity bias on the one step test and a novelty bias on 

the three step test. All of these predictions were confirmed experimentally with 10-

month-old infants. Indeed, the fit of the model to infants’ performance was robust even at 

the level of individual differences. In particular, regression analyses showed similar 

patterns of covariance across the model and infant samples. 

 There were three additional accomplishments of Chapter 4. First, the empirical 

results showed that 10-month-olds can discriminate along a single, continuous metrically 

organized feature dimension embedded in a multi-dimensional object. Previous studies 

have shown that infants can discriminate between stimuli that differ in the number of 

dimensions (Welch, 1974), along both dimensions of a two-dimensional object (Cohen et 

al., 1971), and along continuous, metrically organized magnitude dimension such as area 

(Brannon et al., 2006). No previous study has tested discrimination on a single, 
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continuous feature dimension, in part, because few stimulus sets have well-controlled 

metric properties. Second, model simulations and empirical results showed that 

individual differences in looking were related to discrimination. In particular, looking on 

the one step test was related to discrimination on the one step test. And well-known 

looking indices of processing speed – shift rate, look duration, and peak look – during 

familiarization were related to performance on the three step test. Lastly, the empirical 

results show that the DNF model is able to capture—and predict—meaningful links 

between looking and memory formation in infants. This motivated the next study probing 

changes in looking and cognitive dynamics over development. 

 Chapter 5 asked whether looking indices of processing speed and discrimination 

change together over development and are linked within individuals. Previous studies 

have shown that shift rate increases, look duration decreases, and peak looks decrease 

over development; however, it is unclear how these changes are related to changes in 

discrimination over the first year. To address this question, I measured looking indices of 

processing speed and discrimination performance in 5-, 7-, and 10-month-olds. Results 

showed that looking indices of processing speed and discrimination change together over 

development. Consistent with previous studies, infants exhibited faster shift rates, shorter 

look durations, and shorter peak looks with age. Infants also discriminated between 

familiar and dissimilar items at 7 and 10 months but not 5 months of age. Finally, 

individual differences in looking indices of processing speed were linked to 

discrimination in the regression analyses. Interestingly, looking measures were linked to 

discrimination on the one step test, but not the three step test as in Chapter 4.   
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These data are consistent with simulation results of the DNF model showing that 

developmental changes in looking and discrimination can arise from the same 

mechanism. In Chapter 5, I also tested whether the SPH could capture developmental 

change in looking dynamics and discrimination in the VPC. Simulation results showed 

that, indeed, the SPH captured these developmental changes: the model captured data 

from 36 mean values and 36 standard deviation measures by scaling 4 model parameters 

systematically over development. I also tested whether the SPH was required to capture 

these changes. Although scaling of the strength of neural interactions in working memory 

did yield a satisfactory fit for many measures of performance, changes in working 

memory alone did not effectively capture changes in looking time over development. 

Moreover, simulations of the model that were initialized with 7-month-old parameter 

values did not capture the qualitative pattern of results over development. In particular, 

the model failed to capture the improvement in discrimination between 5 and 7 months. 

Thus, changes in both PF and WM parameters are needed to capture the entire profile of 

developmental change. 

Critically, individual differences in looking during familiarization were related to 

differences in discrimination in the model and infants, despite the fact that all model 

simulations within a given age were run with the exact same parameters. Thus, stochastic 

fluctuation in the DNF model captured the link between individual differences in looking 

and discrimination. This finding may indicate that some individual differences in the 

literature may have a stochastic source and emerge as infants look and learn. Although 

such differences emerge through initial fluctuations in the neural system, they reveal 

meaningful covariation between looking and discrimination  that arises from how looking 
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is coupled to cognition. In particular, stochastic fluctuations in the fixation, perceptual, 

and working memory systems cause variations in what is learned over the first few trials; 

these differences in learning then cascade over time to produce meaningful variations in 

performance at test. Note, however, that not all individual differences in looking are 

emergent during the course of a testing session. Some individual differences are stable 

across the first year (e.g., Colombo et al., 1987; Rose et al., 2001) and are, therefore, 

likely to reflect the developmental state of each individual infant.  

An important future direction will be to further investigate the multiple influences 

on looking and learning at the level of the individual. Stochastic fluctuations in looking 

are one source of individual differences. Infants’ long-term history with the stimuli can 

also influence learning (Kovack-Lesh et al., 2008; Quinn, Yahr, Kuhn, Slater, & Pascalis, 

2002). Other studies show that individual differences in neonatal experience, as in 

preterm infant populations, can influence looking and learning (Rose et al., 2001). 

Finally, motor dynamics of the body can influence looking (Robertson et al., 2001). 

Grappling with this complex picture is critical to understanding developmental change at 

the individual level. I contend that computational modeling can play an important role in 

tackling this challenge.  

 In Chapter 6, I asked whether looking and discrimination follow the same 

developmental trajectory in at-risk infants as in typically developing infants. This is an 

important question because at-risk infants exhibit delayed performance relative to 

typically developing infants on looking measures and recognition performance. Such 

differences are assumed to reflect impaired processing speed. Results from Chapter 6 

were consistent with this: there were robust changes in speed of processing between the 
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4- and 10-month-old data sets– shift rate increased, look duration decreased, and peak 

looks decreased with age. Moreover, regression analyses revealed that these changes in 

speed of processing captured a significant proportion of variance in discrimination 

performance. Thus, as in the typically developing sample, speed of processing and 

discrimination were linked at the individual level.  

Nevertheless, there were differences in discrimination across populations – young 

at-risk infants, as a group, discriminated the familiar and novel items on the three step 

test, while older at-risk infants did not. This raises the possibility that discrimination in 

at-risk infants may be U-shaped, that is, at-risk infants older than the group tested in 

Experiment 3 might show robust discrimination on the three step test. This also raises the 

question of why young at-risk infants discriminate the three step test, but young typically 

developing infants do not. An intriguing possibility is that the slower shifting, longer look 

durations, and longer peak looks of young at-risk infants facilitates memory formation. 

Reversely, the faster shifting, shorter look durations, and shorter peak looks of older at-

risk infants hinders memory formation.  

I contend that such questions are open to direct investigation using methods 

comparable to Jankowski et al. (2001). These researchers experimentally manipulated 

infants’ looking dynamics and altered recognition performance. Interestingly, Jankowski 

et al. found that increasing shifting and shortening look durations improved 

discrimination. This is the opposite pattern from what I observed with the preterm 

sample. The reason for this difference might be that different patterns of looking may 

facilitate learning about and discriminating among simple, two-dimensional objects such 

as those used in this thesis and the high-dimensional geometrical patterns used by 
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Jankowski et al. More specifically, fast shifting may foster sampling of multiple 

dimensions across looks, increasing the likelihood that a remembered dimension is 

recognized at test. Slow shifting, by contrast, may reduce the number of dimensions 

sampled, leaving multiple dimensions relatively novel across familiar and novel stimuli at 

test.  

A long-term goal of the work presented in this thesis is to develop tools for 

assessing cognition in atypically developing populations and to develop interventions that 

foster positive developmental outcomes. Assessment requires a procedure sensitive to 

population differences in looking and cognition. The VPC may be a candidate procedure. 

Indeed, Chapter 6 showed that the variant of the VPC used here produces comparable 

cross-population differences to the variant of the VPC used by Rose et al. (2001). 

Together, this suggests that the VPC may be more sensitive to population differences 

than Rose et al’s (2002) processing speed task or Rose et al’s (2001b) serial recognition 

task that did not yield population differences. Using looking as a behavioral assessment 

tool, however, requires a much richer understanding of the link between looking and 

cognitive dynamics across populations than has, at present, been achieved. Experimental 

manipulations of infants’ looking, like those described above, take an important step in 

this direction. 

Intervention, however, requires a somewhat different understanding. Intervention 

requires an understanding of embodied, dynamic exploratory systems as captured by the 

DNF model. One implication of such a model is that it can autonomously look, as infants 

do, at a world that includes dynamic, stimulating events. This provides a critical link to 

studying how social partners influence looking and cognitive dynamics in infancy. For 
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example, parents can positively impact atypical development by modulating where 

infants look. Parents of preterm infants who maintain their infants’ gaze on the object 

they are currently exploring, rather than redirecting to other non-fixated objects, have 

infants who look at more objects and initiate joint attention more (Landry & Chapieski, 

1988). Moreover, intervention studies that train parents to maintain their infant’s gaze on 

objects result in positive developmental change in basic social and cognitive abilities 

(Landry et al., 2008). Working with an embodied system that evolves over multiple time 

scales enables exploration of how such manipulations impact learning in the moment and 

accumulate to create developmental change in cognition.  

Consider a hypothetical example. If the DNF model were exploring a task space 

with multiple objects, the duration spent looking at a given object could be influenced by 

whether or not the object was manipulated by a social partner. This would prolong 

looking and, in turn, facilitate memory formation. Memory is then carried forward in 

time, facilitating memory formation for similar items upon subsequent encounters. Those 

objects are recognized more quickly, biasing the system to explore and learn about new 

items.  

 This thesis made important strides toward the overarching goal of attaining a 

richer understanding of the link between looking and cognitive dynamics. However, there 

are some limitations that must be resolved to fully achieve this goal. My method for 

examining this link was to use a neural network model that captures basic perceptual and 

memory process that are generally agreed to underlie infant looking behavior (Cohen, 

1973; French et al., 2004; Hunter & Ames, 1988; Oakes et al., 2008). I captured 

developmental change in looking by manipulating parameters that govern these basic 
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processes in the DNF model. The model was able to reproduce infants’ behavior at 

qualitative and quantitative levels.  

 One limitation, however, is that developmental change was captured by hand – 

that is, as the modeler I manipulated parameters that produced expected and necessary 

changes in cognitive dynamics to capture behavioral changes. The system itself did not 

create its own development. In principle, real-time neural activity could be strengthened 

via an experience-dependent, autonomous process. This would enable active neural 

populations to interact more strongly upon future encounters with the stimulus. Such 

strengthening of active connections is similar to the Hebbian process implemented here. 

It is possible that such processes play an important role when carried forward across the 

longer timescales of development. Future work will be needed to probe candidate 

mechanisms of developmental change to see whether a neural system like the one used 

here can create its own developmental changes over time. 

A second limitation in the present work is that I captured developmental change 

in behavior by exclusively manipulating cognitive parameters. This is consistent with the 

widely accepted view that developmental change in looking arises from changes in 

cognition. Nevertheless, this view neglects dramatic changes in motor control during the 

first months of the first year that do impact looking dynamics (Robertson, Bacher, & 

Huntington, 2001; Robertson & Johnson, 2009). In an exploratory system, such as the 

DNF model, a slightly slowed or, reversely, speeded release of fixation can make a 

substantial contribution to the time course of memory formation. One avenue for future 

research will be to explore relations between motor and memory dynamics.  
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In closing, let me revisit the contribution of the theoretical model developed in 

this thesis to our understanding of looking and cognitive dynamics, and the contribution 

of theoretical models to developmental science more generally. It is not always clear 

whether the field of developmental science values computational modeling (for a 

discussion, see Simmering, Triesch, Deak, & Spencer, 2010). Yet, formal neural network 

models have been used in developmental science for decades. In this thesis, I presented 

19 simulation sets and a total of 11,200 simulations. The question is: did this simulation 

work enhance this thesis beyond what it may have been without it? I believe that it did. 

First, the ability of the DNF model to capture developmental change in looking, 

recognition, and discrimination expands the range of possible mechanisms that may 

underlie these cognitive and behavioral changes (for a similar discussion, see Thomas, 

2000). Second, the DNF model enabled me to test whether the same developmental 

mechanism – the SPH – that captures changes in children’s spatial memory abilities can 

also capture developmental change in infant looking and memory. This is a critical test of 

the generality of the SPH. The SPH appears to be quite general and captures constraints 

that appear necessary to explain a rich pattern of looking and learning over the first year. 

This also highlights another contribution of the DNF model to this thesis: the dynamic 

field framework is a useful tool for testing theoretical assumptions.  

Next, a well-tuned model makes contributions beyond the specific data sets under 

consideration. Consider the potential role of test order discussed in Chapter 5. In 

Experiment 1, I found that looking indices of processing speed were predictive of 

discrimination on the three step test. By contrast, in Experiment 2, I found that looking 

indices of processing speed were predictive of discrimination on the one step test. One 
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potential source of this cross-experiment difference was that one age was tested with 

counterbalanced test orders in Experiment 1, while three ages with a single test order 

were probed in Experiment 2. Testing this possibility experimentally would be costly and 

laborious. Instead, I used the DNF model to shed light on this issue by running a 

simulation experiment. Such simulation experiments could help answer open questions 

that arise from experimental data that are simply impractical to answer.   

 The results of such simulation experiments, however, are only as good as the 

parameter settings of the model. This reveals two challenges for computational modeling 

in developmental science. The first challenge is that parameters sometimes need to be 

modified to capture a new data set with an existing model (French et al., 2004; 

Mareschal, French, & Quinn, 2000). This leads to a common criticism of computational 

modeling, that any pattern of data can be fit with enough parameter hunting. There is 

certainly some merit to this criticism. For instance, the DNF model used here could have 

captured the developmental results from Chapter 5 in much more detail if I freely 

manipulated parameters. So, why did I not? The parameters I changed were motivated by 

a theoretical constraint – the SPH. The modeler has a responsibility to use such 

constraints where available. But when a model succeeds in a constrained setting, this 

should help overcome concerns about parametric change across contexts. In such 

settings, it is generally not the case that any pattern could be modeled.    

The second problem is determining the usefulness of a model and a specific 

parameter set, as well as the usefulness of proposed developmental mechanisms. One 

method for addressing this problem is to capture a wide range of data across tasks and to 

generalize developmental mechanisms across domains. The work in this thesis makes an 
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important contribution in both senses. I successfully generalized the DNF model from 

single presentation habituation to the visual paired comparison task. Moreover, I 

generalized the SPH from the domain of spatial cognition to the domain of visual 

recognition in infancy. Both forms of generalization lend credence to the usefulness of 

the DNF model and the SPH. Another way to probe usefulness, of course, is to generate 

novel predictions and test them empirically. Chapter 4 demonstrated that the DNF model 

was up to this challenge as well: I used the model to test a radical prediction that infants, 

under special circumstances, would show a familiarity and novelty bias late in learning. 

In summary, then, I contend that the rich theory-experiment link in this thesis has 

provided a deeper understanding of how looking and cognitive dynamics are linked in 

infancy. It is in this link – not a particular model or parameter setting - that I believe will 

foster new scientific breakthroughs in the years to come as researchers fully embrace the 

autonomous, exploratory nature of looking and learning in infancy. 
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